Skip to main content
Log in

Effects of TGF-betas and a specific antagonist on apoptosis of immature rat male germ cells in vitro

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Massive apoptosis of pubertal male germ cells is important for the development of functional spermatogenesis in the adult testis. Although the trigger(s) for male germ cell loss at puberty remain undefined, we have hypothesized that transforming growth factor-betas (TGF-βs) play an active role. Here we demonstrate that the three mammalian TGF-β isoforms, TGF-β1, TGF-β2 and TGF-β3, induce distinct apoptosis of pubertal spermatogonia and spermatocytes in a dose-dependent manner. Induction of male germ cell death by activation of caspase-3 was most pronounced with TGF-β2 compared to TGF-β1 and TGF-β3. Furthermore, we found colocalization of activated caspase-3 with apoptotic protease-activating factor-1 (Apaf-1) in apoptotic germ cells, thus indicating the importance of the intrinsic mitochondrial pathway in TGF-β-induced apoptosis. The specificity of the TGF-β effects was proven by addition of recombinant latency-associated peptide against TGF-β1 (rLAP-TGF-β1) which completely abolished TGF-β1-induced and TGF-β3-induced germ cell apoptosis. Although TGF-β2-triggered germ cell death also was significantly reduced by rLAP-TGF-β1, inhibition was not maximal. Our results suggest that the three TGF-β isoforms induce apoptosis of pubertal male germ cells via the mitochondrial pathway in vitro and are thus likely candidates involved in the excessive first wave of apoptosis of male germ cells during puberty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. de Caestecker M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev 2004; 15: 1–11.

    Article  PubMed  CAS  Google Scholar 

  2. Newfeld SJ, Wisotzkey RG, Kumar S. Molecular evolution of a developmental pathway: Phylogenetic analyses of transforming growth factor-β family ligands, receptors and Smad signal transducers. Genetics 1999; 152: 783–795.

    PubMed  CAS  Google Scholar 

  3. Dubois CM, Blanchette F, Laprise MH, Leduc R, Grondin F, Seidah NG. Evidence that furin is an authentic transforming growth factor-β1-converting enzyme. Am J Pathol 2001; 158: 305–316.

    PubMed  CAS  Google Scholar 

  4. Hyytiainen M, Penttinen C, Keski-Oja J. Latent TGF-β binding proteins: Extracellular matrix association and roles in TGF-β activation. Crit Rev Clin Lab Sci 2004; 41: 233–264.

    Article  PubMed  CAS  Google Scholar 

  5. Murphy-Ullrich JE, Poczatek M. Activation of latent TGF-β by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev 2000; 11: 59–69.

    Article  PubMed  CAS  Google Scholar 

  6. ten Dijke P, Hill CS. New insights into TGF-β-Smad signalling. Trends Biochem Sci 2004; 29: 265–273.

    Article  PubMed  CAS  Google Scholar 

  7. Rotzer D, Roth M, Lutz M, Lindemann D, Sebald W, Knaus P. Type III TGF-β receptor-independent signalling of TGF-β2 via TβRII-B, an alternatively spliced TGF-β type II receptor. EMBO J 2001; 20: 480–490.

    Article  PubMed  CAS  Google Scholar 

  8. Schuster N, Krieglstein K. Mechanisms of TGF-β-mediated apoptosis. Cell Tissue Res 2002; 307: 1–14.

    Article  PubMed  CAS  Google Scholar 

  9. Newmeyer DD, Ferguson-Miller S. Mitochondria: Releasing power for life and unleashing the machineries of death. Cell 2003; 112: 481–490.

    Article  PubMed  CAS  Google Scholar 

  10. Danial NN, Korsmeyer SJ. Cell death: Critical control points. Cell 2004; 116: 205–219.

    Article  PubMed  CAS  Google Scholar 

  11. Pentikainen V, Dunkel L, Erkkila K. Male germ cell apoptosis. Endocr Dev 2003; 5: 56–80.

    Article  PubMed  CAS  Google Scholar 

  12. Rodriguez I, Ody C, Araki K, Garcia I, Vassalli P. An early and massive wave of germinal cell apoptosis is required for the development of functional spermatogenesis. EMBO J 1997; 16: 2262–2270.

    Article  PubMed  CAS  Google Scholar 

  13. Shiratsuchi A, Umeda M, Ohba Y, Nakanishi Y. Recognition of phosphatidylserine on the surface of apototic spermatogenic cells and subsequent phagocytosis by Sertoli cells of the rat. J Biol Chem 1997; 272: 2354–2358.

    Article  PubMed  CAS  Google Scholar 

  14. Lui WY, Lee WM, Cheng CY. Transforming growth factor-β3 perturbs the inter-Sertoli tight junction permeability barrier in vitro possibly mediated via its effects on occludin, zonula occludens-1, and claudin-11. Endocrinology 2001; 142: 1865–1877.

    Article  PubMed  CAS  Google Scholar 

  15. Lui WY, Lee WM, Cheng CY. TGF-betas: Their role in testicular function and Sertoli cell tight junction dynamics. Int J Androl 2003; 26: 147–160.

    Article  PubMed  CAS  Google Scholar 

  16. Lui WY, Lee WM, Cheng CY. Transforming growth factor β3 regulates the dynamics of Sertoli cell tight junctions via the p38 mitogen-activated protein kinase pathway. Biol Reprod 2003; 68: 1597–1612.

    Article  PubMed  CAS  Google Scholar 

  17. Lui WY, Wong CH, Mruk DD, Cheng CY. TGF-β3 regulates the blood-testis barrier dynamics via the p38 mitogen activated protein (MAP) kinase pathway: an in vivo study. Endocrinology 2003; 144: 1139–1142.

    Article  PubMed  CAS  Google Scholar 

  18. Wong CH, Mruk DD, Lui WY, Cheng CY. Regulation of blood-testis barrier dynamics: an in vivo study. J Cell Sci 2004; 117: 783–798.

    Article  PubMed  CAS  Google Scholar 

  19. Yan W, Suominen J, Toppari J. Stem cell factor protects germ cells from apoptosis in vitro. J Cell Sci 2000; 113: 161–168.

    PubMed  CAS  Google Scholar 

  20. Olaso R, Pairault C, Boulogne B, Durand P, Habert R. Transforming growth factor β1 and β2 reduce the number of gonocytes by increasing apoptosis. Endocrinology 1998; 139: 733–740.

    Article  PubMed  CAS  Google Scholar 

  21. Mullaney BP, Skinner MK. Transforming growth factor-beta (β1, β2, and β3) gene expression and action during pubertal development of the seminiferous tubule: potential role at the onset of spermatogenesis. Mol Endocrinol 1993; 7: 67–76.

    Article  PubMed  CAS  Google Scholar 

  22. Jahnukainen K, Chrysis D, Hou M, Parvinen M, Eksborg S, Soder O. Increased apoptosis occurring during the first wave of spermatogenesis is stage-specific and primarily affects midpachytene spermatocytes in the rat testis. Biol Reprod 2004; 70: 290–296.

    Article  PubMed  CAS  Google Scholar 

  23. Chipuk JE, Green DR. Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 6: 268–275.

  24. Bottinger EP, Factor VM, Tsang ML, et al. The recombinant proregion of transforming growth factor β1 (latency-associated peptide) inhibits active transforming growth factor β1 in transgenic mice. Proc Natl Acad Sci USA 1996; 93: 5877–5882.

    Article  PubMed  CAS  Google Scholar 

  25. Koishi K, Dalzell KG, McLennan IS. The expression and structure of TGF-β2 transcripts in rat muscles. Biochim Biophys Acta 2004; 1492: 311–319.

    Google Scholar 

  26. Young GD, Murphy-Ullrich JE. Molecular interactions that confer latency to transforming growth factor-β. J Biol Chem 2004; 279: 38032–38039.

    Article  PubMed  CAS  Google Scholar 

  27. Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh AJ. Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology 1995; 136: 5–12.

    Article  PubMed  CAS  Google Scholar 

  28. Furuchi T, Masuko K, Nishimune Y, Obinata M, Matsui Y. Inhibition of testicular germ cell apoptosis and differentiation in mice misexpressing Bcl-2 in spermatogonia. Development 1996; 122: 1703–1709.

    PubMed  CAS  Google Scholar 

  29. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 1995; 270: 96–99.

    PubMed  CAS  Google Scholar 

  30. Russell LD, Chiarini-Garcia H, Korsmeyer SJ, Knudson CM. Bax-dependent spermatogonia apoptosis is required for testicular development and spermatogenesis. Biol Reprod 2002; 66: 950–958.

    Article  PubMed  CAS  Google Scholar 

  31. Sinha Hikim AP, Lue Y, Diaz-Romero M, Yen PH, Wang C, Swerdloff RS. Deciphering the pathways of germ cell apoptosis in the testis. J Steroid Biochem Mol Biol 2003; 85: 175–182.

    Article  PubMed  CAS  Google Scholar 

  32. Narisawa S, Hecht NB, Goldberg E, Boatright KM, Reed JC, Millan JL. Testis-specific cytochrome c-null mice produce functional sperm but undergo early testicular atrophy. Mol Cell Biol 2002; 22: 5554–5562.

    Article  PubMed  CAS  Google Scholar 

  33. Honarpour N, Du C, Richardson JA, Hammer RE, Wang X, Herz J. Adult Apaf-1-deficient mice exhibit male infertility. Dev Biol 2000; 218: 248–258.

    Article  PubMed  CAS  Google Scholar 

  34. Freathy C, Brown DG, Roberts RA, Cain K. Transforming growth factor-β1 induces apoptosis in rat FaO hepatoma cells via cytochrome c release and oligomerization of Apaf-1 to form a approximately 700-kd apoptosome caspase-processing complex. Hepatology 2000; 32: 750–760.

    Article  PubMed  CAS  Google Scholar 

  35. Bedell MA, Mahakali Zama A. Genetic analysis of Kit ligand functions during mouse spermatogenesis. J Androl 2004; 25: 188–199.

    PubMed  CAS  Google Scholar 

  36. Haagmans BL, Hoogerbrugge JW, Themmen AP, Teerds KJ. Rat testicular germ cells and Sertoli cells release different types of bioactive transforming growth factor beta in vitro. Reprod Biol Endocrinol 2003; 1: 3.

    Article  PubMed  Google Scholar 

  37. Konrad L, Keilani MM, Cordes A, et al. Rat Sertoli cells express epithelial but also mesenchymal genes after immortalization with SV40. Biochim Biophys Acta 2005; 1722: 6–14.

    PubMed  CAS  Google Scholar 

  38. Konrad L, Albrecht M, Renneberg H, Aumuller G. Transforming growth factor-β2 mediates mesenchymal-epithelial interactions of testicular somatic cells. Endocrinology 2000; 141: 3679–3686.

    Article  PubMed  CAS  Google Scholar 

  39. Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factor β1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA 1995; 92: 2572–2576.

    Article  PubMed  CAS  Google Scholar 

  40. Narula A, Kilen S, Ma E, Kroeger J, Goldberg E, Woodruff TK. Smad4 overexpression causes germ cell ablation and leydig cell hyperplasia in transgenic mice. Am J Pathol 2002; 161: 1723–1734.

    PubMed  CAS  Google Scholar 

  41. Sanford LP, Ormsby I, Gittenberger-de Groot AC, et al. TGFβ2 knockout mice have multiple developmental defects that are non-overlapping with other TGFβ knockout phenotypes. Development 1997; 124: 2659–2670.

    PubMed  CAS  Google Scholar 

  42. Chang H, Brown CW, Matzuk MM. Genetic analysis of the mammalian transforming growth factor-β superfamily. Endocr Rev 2002; 23: 787–823.

    Article  PubMed  CAS  Google Scholar 

  43. Kulkarni AB, Thyagarajan T, Letterio JJ. Function of cytokines within the TGF-β superfamily as determined from transgenic and gene knockout studies in mice. Curr Mol Med 2002; 2: 303–327.

    Article  PubMed  CAS  Google Scholar 

  44. Bhowmick MA, Chytil A, Plieth D, et al. TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 2004; 303: 848–851.

    Article  PubMed  CAS  Google Scholar 

  45. Stenvers KL, Tursky ML, Harder KW, et al. Heart and liver defects and reduced transforming growth factor β2 sensitivity in transforming growth factor β type III receptor-deficient embryos. Mol Cell Biol 2003; 23: 4371–4385.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Konrad.

Additional information

Lutz Konrad and Marcel Munir Keilani contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konrad, L., Keilani, M.M., Laible, L. et al. Effects of TGF-betas and a specific antagonist on apoptosis of immature rat male germ cells in vitro . Apoptosis 11, 739–748 (2006). https://doi.org/10.1007/s10495-006-5542-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-5542-z

Keywords

Navigation