Skip to main content

Advertisement

Log in

Cloning and characterization of boron transporters in Brassica napus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Six full-length cDNA encoding boron transporters (BOR) were isolated from Brassica napus (AACC) by rapid amplification of cDNA ends (RACE). The phylogenic analysis revealed that the six BORs were the orthologues of AtBOR1, which formed companying with the triplication and allotetra-ploidization process of B. napus, and were divided into three groups in B. napus. Each group was comprised of two members, one of which was originated from Brassica rapa (AA) and the other from Brassica oleracea (CC). Based on the phylogenetic relationships, the six genes were named as BnBOR1;1a, BnBOR1;1c, BnBOR1;2a, BnBOR1;2c, BnBOR1;3a and BnBOR1;3c, respectively. The deduced BnBOR1 s had extensive similarity with other plant BORs, with the identity of 74–96.8% in amino acid sequence. The BnBOR1;3a and BnBOR1;3c resembled AtBOR1 in number and positions of the 11 introns, but the others only have 9 introns. After the gene duplication, there was evidence of purifying selection under a divergent selective pressure. The expression patterns of the six BnBOR1 s were detected by semi-quantitative RT–PCR. The BnBOR1;3a and BnBOR1;3c showed a ubiquitous expression in all of the investigated tissues, whereas the other four genes showed similar tissue-specific expression profile. Unlike the non-transcriptional regulation of AtBOR1, the expression of BnBOR1;1c and BnBOR1;2a were obviously induced by boron deficiency. This study suggested that the BOR1 s had undergone a divergent expression pattern in the genome of B. napus after that the B. napus diverged from Arabidopsis thaliana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

B:

Boron

MIPs:

Major intrinsic proteins

RACE:

Rapid amplification of cDNA ends

MYA:

Million years ago

CDS:

Coding sequence

PCR:

Polymerase chain reactions

RT–PCR:

Reverse transcription polymerase chain reactions

LRT:

Likelihood ratio test

TR:

Two ration model

HWSB:

Hot water-soluble boron

References

  1. Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 37(4):629–672

    Google Scholar 

  2. Nielsen FH (2000) The emergence of boron as nutritionally important throughout the life cycle. Nutrition 16(7–8):512–514. doi:10.1016/S0899-9007(00)00324-5

    Article  PubMed  CAS  Google Scholar 

  3. Kobayashi M, Matoh T, Azuma J-i (1996) Two chains of rhamnogalacturonan II are cross-linked by borate-diol ester bonds in higher plant cell walls. Plant Physiol 110(3):1017–1020

    PubMed  CAS  Google Scholar 

  4. Ishii T, Matsunaga T (1996) Isolation and characterization of a boron-rhamnogalacturonan-II complex from cell walls of sugar beet pulp. Carbohydr Res 284(1):1–9. doi:10.1016/008-6215(96)00010-9

    Article  CAS  Google Scholar 

  5. O’Neill MA, Eberhard S, Albersheim P, Darvill AG (2001) Requirement of borate cross-linking of cell wall rhamnogalacturonan II for Arabidopsis growth. Science 294(5543):846–849. doi:10.1126/science.1062319

    Article  PubMed  Google Scholar 

  6. O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Annu Rev Plant Biol 55:109–139. doi:10.1146/annurev.arplant.55.031903.141750

    Article  PubMed  Google Scholar 

  7. Marschner H (1995) Functions of mineral nutrients: micronutrients. In: Mineral nutrition of higher plants, 2nd ed. Academic Press, London, pp 313–404

  8. Hu H, Brown PH, Labavitch JM (1996) Species variability in boron requirement is correlated with cell wall pectin. J Exp Bot 47(2):227–232. doi:10.1093/jxb/47.2.227

    Article  CAS  Google Scholar 

  9. Raven JA (1980) Short- and long-distance transport of boric acid in plants. New Phytol 84:231–249

    Article  CAS  Google Scholar 

  10. Brown PH, Shelp BJ (1997) Boron mobility in plants. Plant Soil 193(1):85–101

    Article  CAS  Google Scholar 

  11. Dordas C, Brown PH (2000) Permeability of boric acid across lipid bilayers and factors affecting it. J Membrane Biol 175(2):95–105. doi:10.1007/s002320001058

    Article  CAS  Google Scholar 

  12. Dannel F, Pfeffer H, Römheld V (2000) Characterization of root boron pools, boron uptake and boron translocation in sunflower using the stable isotopes 10B and 11B. Aust J Plant Physiol 27(5):397–405. doi:10.1071/PP99086

    CAS  Google Scholar 

  13. Stangoulis JC, Reid RJ, Brown PH, Graham RD (2001) Kinetic analysis of boron transport in Chara. Planta 213(1):142–146. doi:10.1007/s004250000484

    Article  PubMed  CAS  Google Scholar 

  14. Dordas C, Brown PH (2001) Evidence for channel mediated transport of boric acid in squash (Cucurbita pepo). Plant Soil 235(1):95–103. doi:10.1023/A:1011837903688

    Article  CAS  Google Scholar 

  15. Dordas C, Chrispeels MJ, Brown PH (2000) Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots. Plant Physiol 124(3):1349–1362

    Article  PubMed  CAS  Google Scholar 

  16. Nozawa A, Takano J, Kobayashi M, Wirén NV, Fujiwara T (2006) Roles of BOR1, DUR3, and FPS1 in boron transport and tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 262(2):216–222. doi:10.1111/j.1574-6968.2006.00395.x

    Article  PubMed  CAS  Google Scholar 

  17. Takano J, Wada M, Ludewig U, Schaaf G, Wirén NV, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18(6):1498–1509. doi:10.1105/tpc.106.041640

    Article  PubMed  Google Scholar 

  18. Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20(10):2860–2875. doi:10.1105/tpc.108.058628

    Article  PubMed  CAS  Google Scholar 

  19. Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002) Arabidopsis boron transporter for xylem loading. Nature 420(6913):337–340. doi:10.1038/nature01139

    Article  PubMed  CAS  Google Scholar 

  20. Tanaka M, Fujiwara T (2008) Physiological roles and transport mechanisms of boron: perspectives from plants. Pflügers Archiv 456(4):671–677. doi:10.1007/s00424-007-0370-8

    Article  PubMed  CAS  Google Scholar 

  21. Takano J, Miwa K, Yuan L, Wirén NV, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter of Arabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci USA 102(34):12276–12281. doi:10.1073/pnas.0502060102

    Article  PubMed  CAS  Google Scholar 

  22. Nakagawa Y, Hanaoka H, Kobayashi M, Miyoshi K, Miwa K, Fujiwara T (2007) Cell-type specificity of the expression of Os BOR1, a rice efflux boron transporter gene, is regulated in response to boron availability for efficient boron uptake and xylem loading. Plant Cell 19(8):2624–2635. doi:10.1105/tpc.106.049015

    Article  PubMed  CAS  Google Scholar 

  23. Sutton T, Baumann U, Hayes J, Collins NC, Shi B-J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P (2007) Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318(5855):1446–1449. doi:10.1126/science.1146853

    Article  PubMed  CAS  Google Scholar 

  24. Miwa K, Takano J, Omori H, Seki M, Shinozaki K, Fujiwara T (2007) Plants tolerant of high boron levels. Science 318(5855):1417. doi:10.1126/science.1146634

    Article  PubMed  CAS  Google Scholar 

  25. Takano J, Toyoda A, Kasai K, Miwa K, Fuji K, Fujiwara T (2008) Endocytic degradation and polarized localization of borate transporters dependent on sorting motifs. In: 19th International Conference on Arabidopsis Research. Montreal, pp 197–198

  26. Takano J, Tanaka M, Toyoda A, Miwa K, Kasai K, Fuji K, Onouchi H, Naito S, Fujiwara T (2010) Polar localization and degradation of Arabidopsis boron transporters through distinct trafficking pathways. Proc Natl Acad Sci USA 107(11):5220–5225. doi:10.1073/pnas.0910744107

    Article  PubMed  CAS  Google Scholar 

  27. Wolf BF, Wirén NV (2002) Plant biology: ping-pong with boron. Nature 420(6913):282–283. doi:10.1038/420282a

    Article  Google Scholar 

  28. Park M, Li Q, Shcheynikov N, Zeng W, Muallem S (2004) NaBC1 is a ubiquitous electrogenic Na+-coupled borate transporter essential for cellular boron homeostasis and cell growth and proliferation. Mol Cell 16(3):331–341. doi:10.1016/j.molcel.2004.09.030

    Article  PubMed  CAS  Google Scholar 

  29. Kaya A, Karakaya HC, Fomenko DE, Gladyshev VN, Koc A (2009) Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol 29(13):3665–3674. doi:10.1128/MCB.01646-08

    Article  PubMed  CAS  Google Scholar 

  30. Franzke A, German D, Al-Shehbaz IA, Mummenhoff K (2009) Arabidopsis family ties: molecular phylogeny and age estimates in Brassicaceae. Taxon 58(2):425–437

    Google Scholar 

  31. U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn J Bot 7:385–452

    Google Scholar 

  32. Parkin IA, Sharpe AG, Lydiate DJ (2003) Patterns of genome duplication within the Brassica napus genome. Genome 46(2):291–303. doi:10.1139/g03-006g03-006

    Article  PubMed  CAS  Google Scholar 

  33. Wuding L (1995) Microelement nutrition and fertilization in china. China Agriculture Press, Beijing, pp 8–36

    Google Scholar 

  34. Yuai Y, Jianming X, Zhengqiang Y, Ke W (1993) Responses of rape genotypes to boron application. Plant Soil 155–156(1):321–324. doi:10.1007/BF00025047

    Article  Google Scholar 

  35. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81(24):8014–8018

    Article  PubMed  CAS  Google Scholar 

  36. Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y (1998) Predicting function: from genes to genomes and back. J Mol Biol 283(4):707–725. doi:10.1006/jmbi.1998.2144

    Article  PubMed  CAS  Google Scholar 

  37. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98

    CAS  Google Scholar 

  38. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  PubMed  CAS  Google Scholar 

  39. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599. doi:10.1093/molbev/msm092

    Article  PubMed  CAS  Google Scholar 

  40. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18(3):502–504

    Article  PubMed  CAS  Google Scholar 

  41. Yang Z (2007) PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 24(8):1586–1591. doi:10.1093/molbev/msm088

    Article  PubMed  CAS  Google Scholar 

  42. Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11(5):725–736

    PubMed  CAS  Google Scholar 

  43. Yang Z (1998) Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15(5):568–573

    PubMed  CAS  Google Scholar 

  44. Yang Z, Nielsen R, Goldman N, Pedersen AM (2000) Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics 155(1):431–449

    PubMed  CAS  Google Scholar 

  45. Nielsen R, Yang Z (1998) Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics 148(3):929–936

    PubMed  CAS  Google Scholar 

  46. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157(1):105–132. doi:10.1016/0022-2836(82)90515-0

    Article  PubMed  CAS  Google Scholar 

  47. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    PubMed  CAS  Google Scholar 

  48. Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14(6):1347–1357

    Article  PubMed  CAS  Google Scholar 

  49. Schaaf G, Schikora A, Haberle J, Vert G, Ludewig U, Briat JF, Curie C, von Wiren N (2005) A putative function for the arabidopsis Fe-Phytosiderophore transporter homolog AtYSL2 in Fe and Zn homeostasis. Plant Cell Physiol 46(5):762–774. doi:10.1093/pcp/pci081

    Article  PubMed  CAS  Google Scholar 

  50. Li WH, Gojobori T (1983) Rapid evolution of goat and sheep globin genes following gene duplication. Mol Biol Evol 1(1):94–108

    PubMed  CAS  Google Scholar 

  51. Nei M (2005) Selectionism and neutralism in molecular evolution. Mol Biol Evol 22(12):2318–2342. doi:10.1093/molbev/msi242

    Article  PubMed  CAS  Google Scholar 

  52. Yang Z (2002) Inference of selection from multiple species alignments. Curr Opin Genet Dev 12(6):688–694. doi:10.1016/S0959-437X(02)00348-9

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (30771283, 30971861) and the National 863 High Technology Program of China (2007AA10Z117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangsen Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2011_930_MOESM1_ESM.png

Supplementary figure Fig. S1 Multiple alignment of BnBOR1 s with AtBOR1 (NP_850469) Dots indicate identical residues with the BnBOR1;1a; grey box and star indicate possible positive selective sites detected by M8 model in PAml analysis; line indicates the conserved HCO3_cotransporer domain (PNG 160 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Shi, L., Zhang, C. et al. Cloning and characterization of boron transporters in Brassica napus . Mol Biol Rep 39, 1963–1973 (2012). https://doi.org/10.1007/s11033-011-0930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0930-z

Keywords

Navigation