Skip to main content

Advertisement

Log in

Revealing epigenetic patterns in gene regulation through integrative analysis of epigenetic interaction network

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Chromatin components and DNA methylation play important roles in regulation of gene expression in mammalian genomes. However, the mechanism underlying how they regulate gene transcription, independently or synergistically, remains largely unknown. We constructed an epigenetic interaction network (EIN) of chromatin components, DNA methylation and gene expression by combining partial correlation coefficient with Pearson correlation coefficient. In EIN, we identified nine direct factors for gene expression. They constitute three interaction modules which synergistically affect gene expression. We introduced a new combination strategy to test how these direct factors in each module regulate gene expression synergistically. We found two inter-attracted patterns and one inter-repulsed patterns among the three modules. Furthermore, we identified 22 indirect factors for gene expression which have effect on gene expression via direct factors. DNA methylation, for example, could regulate gene expression through H3K4me3 and Pol II. Our approach has the potential to help in uncovering inherent relationships between epigenetic factors and gene transcription and guiding experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

EIN:

Epigenetic interaction network

HGPs:

High-expression gene promoters

LGPs:

Low-expression gene promoters

References

  1. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (2007) High-resolution profiling of histone methylations in the human genome. Cell 129(4):823–837. doi:10.1016/j.cell.2007.05.009

    Article  PubMed  CAS  Google Scholar 

  2. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10(5):295–304. doi:10.1038/nrg2540

    Article  PubMed  CAS  Google Scholar 

  3. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, Cuddapah S, Cui K, Roh TY, Peng W, Zhang MQ, Zhao K (2008) Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 40(7):897–903. doi:10.1038/ng.154

    Article  PubMed  CAS  Google Scholar 

  4. Faast R, Thonglairoam V, Schulz TC, Beall J, Wells JR, Taylor H, Matthaei K, Rathjen PD, Tremethick DJ, Lyons I (2001) Histone variant H2A.Z is required for early mammalian development. Curr Biol 11(15):1183–1187

    Article  PubMed  CAS  Google Scholar 

  5. Rakyan VK, Down TA, Maslau S, Andrew T, Yang TP, Beyan H, Whittaker P, McCann OT, Finer S, Valdes AM, Leslie RD, Deloukas P, Spector TD (2010) Human aging-associated DNA hypermethylation occurs preferentially at bivalent chromatin domains. Genome Res 20(4):434–439. doi:10.1101/gr.103101.109

    Article  PubMed  CAS  Google Scholar 

  6. Kawakami K, Nakamura A, Ishigami A, Goto S, Takahashi R (2009) Age-related difference of site-specific histone modifications in rat liver. Biogerontology 10(4):415–421. doi:10.1007/s10522-008-9176-0

    Article  PubMed  CAS  Google Scholar 

  7. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8(4):286–298. doi:10.1038/nrg2005

    Article  PubMed  CAS  Google Scholar 

  8. Dalvai M, Bystricky K (2010) The role of histone modifications and variants in regulating gene expression in breast cancer. J Mammary Gland Biol Neoplasia 15(1):19–33. doi:10.1007/s10911-010-9167-z

    Article  PubMed  Google Scholar 

  9. Herranz M, Esteller M (2007) DNA methylation and histone modifications in patients with cancer: potential prognostic and therapeutic targets. Methods Mol Biol 361:25–62. doi:10.1385/1-59745-208-4:25

    PubMed  CAS  Google Scholar 

  10. Suzuki M, Jing Q, Lia D, Pascual M, McLellan A, Greally JM (2010) Optimized design and data analysis of tag-based cytosine methylation assays. Genome Biol 11(4):R36. doi:10.1186/gb-2010-11-4-r36

    Article  PubMed  Google Scholar 

  11. Lim PS, Hardy K, Bunting KL, Ma L, Peng K, Chen X, Shannon MF (2009) Defining the chromatin signature of inducible genes in T cells. Genome Biol 10(10):R107. doi:10.1186/gb-2009-10-10-r107

    Article  PubMed  Google Scholar 

  12. Su J, Zhang Y, Lv J, Liu H, Tang X, Wang F, Qi Y, Feng Y, Li X (2010) CpG_MI: a novel approach for identifying functional CpG islands in mammalian genomes. Nucleic Acids Res 38(1):e6. doi:10.1093/nar/gkp882

    Article  PubMed  Google Scholar 

  13. Roh TY, Cuddapah S, Cui K, Zhao K (2006) The genomic landscape of histone modifications in human T cells. Proc Natl Acad Sci USA 103(43):15782–15787. doi:10.1073/pnas.0607617103

    Article  PubMed  CAS  Google Scholar 

  14. Guillemette B, Bataille AR, Gevry N, Adam M, Blanchette M, Robert F, Gaudreau L (2005) Variant histone H2A.Z is globally localized to the promoters of inactive yeast genes and regulates nucleosome positioning. PLoS Biol 3(12):e384. doi:10.1371/journal.pbio.0030384

    Article  PubMed  Google Scholar 

  15. Li B, Pattenden SG, Lee D, Gutierrez J, Chen J, Seidel C, Gerton J, Workman JL (2005) Preferential occupancy of histone variant H2AZ at inactive promoters influences local histone modifications and chromatin remodeling. Proc Natl Acad Sci USA 102(51):18385–18390. doi:10.1073/pnas.0507975102

    Article  PubMed  CAS  Google Scholar 

  16. Ng HH, Robert F, Young RA, Struhl K (2003) Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 11(3):709–719

    Article  PubMed  CAS  Google Scholar 

  17. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL, Schubeler D (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37(8):853–862. doi:10.1038/ng1598

    Article  PubMed  CAS  Google Scholar 

  18. Miranda TB, Jones PA (2007) DNA methylation: the nuts and bolts of repression. J Cell Physiol 213(2):384–390. doi:10.1002/jcp.21224

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe Y, Numata K, Murata S, Osada Y, Saito R, Nakaoka H, Yamamoto N, Watanabe K, Kato H, Abe K, Kiyosawa H (2010) Genome-wide analysis of expression modes and DNA methylation status at sense-antisense transcript loci in mouse. Genomics 96:333–341. doi:10.1016/j.ygeno.2010.08.007

    Article  PubMed  CAS  Google Scholar 

  20. Latham JA, Dent SY (2007) Cross-regulation of histone modifications. Nat Struct Mol Biol 14(11):1017–1024. doi:10.1038/nsmb1307

    Article  PubMed  CAS  Google Scholar 

  21. Yu H, Zhu S, Zhou B, Xue H, Han JD (2008) Inferring causal relationships among different histone modifications and gene expression. Genome Res 18(8):1314–1324. doi:10.1101/gr.073080.107

    Article  PubMed  CAS  Google Scholar 

  22. Chernukhin I, Shamsuddin S, Kang SY, Bergstrom R, Kwon YW, Yu W, Whitehead J, Mukhopadhyay R, Docquier F, Farrar D, Morrison I, Vigneron M, Wu SY, Chiang CM, Loukinov D, Lobanenkov V, Ohlsson R, Klenova E (2007) CTCF interacts with and recruits the largest subunit of RNA polymerase II to CTCF target sites genome-wide. Mol Cell Biol 27(5):1631–1648. doi:10.1128/MCB.01993-06

    Article  PubMed  CAS  Google Scholar 

  23. Karlic R, Chung HR, Lasserre J, Vlahovicek K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci USA 107(7):2926–2931. doi:10.1073/pnas.0909344107

    Article  PubMed  CAS  Google Scholar 

  24. Fan S, Zhang MQ, Zhang X (2008) Histone methylation marks play important roles in predicting the methylation status of CpG islands. Biochem Biophys Res Commun 374(3):559–564. doi:10.1016/j.bbrc.2008.07.077

    Article  PubMed  CAS  Google Scholar 

  25. Zhang Y, Lv J, Liu H, Zhu J, Su J, Wu Q, Qi Y, Wang F, Li X (2010) HHMD: the human histone modification database. Nucleic Acids Res 38(Database issue):149–154. doi:10.1093/nar/gkp968

    Article  CAS  Google Scholar 

  26. Chen L, Zheng S (2009) Studying alternative splicing regulatory networks through partial correlation analysis. Genome Biol 10(1):R3. doi:10.1186/gb-2009-10-1-r3

    Article  PubMed  Google Scholar 

  27. Reverter A, Chan EK (2008) Combining partial correlation and an information theory approach to the reversed engineering of gene co-expression networks. Bioinformatics 24(21):2491–2497. doi:10.1093/bioinformatics/btn482

    Article  PubMed  CAS  Google Scholar 

  28. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, Wang Z, Wei G, Zhao K (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132(5):887–898. doi:10.1016/j.cell.2008.02.022

    Article  PubMed  CAS  Google Scholar 

  29. Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Graf S, Tomazou EM, Backdahl L, Johnson N, Herberth M, Howe KL, Jackson DK, Miretti MM, Fiegler H, Marioni JC, Birney E, Hubbard TJ, Carter NP, Tavare S, Beck S (2008) An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Genome Res 18(9):1518–1529. doi:10.1101/gr.077479.108

    Article  PubMed  CAS  Google Scholar 

  30. Rhead B, Karolchik D, Kuhn RM, Hinrichs AS, Zweig AS, Fujita PA, Diekhans M, Smith KE, Rosenbloom KR, Raney BJ, Pohl A, Pheasant M, Meyer LR, Learned K, Hsu F, Hillman-Jackson J, Harte RA, Giardine B, Dreszer TR, Clawson H, Barber GP, Haussler D, Kent WJ (2010) The UCSC genome browser database: update 2010. Nucleic Acids Res 38:613–619. doi:10.1093/nar/gkp939

    Article  Google Scholar 

  31. Schafer J, Strimmer K (2005) An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 21(6):754–764. doi:10.1093/bioinformatics/bti062

    Article  PubMed  Google Scholar 

  32. da Huang W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  CAS  Google Scholar 

  33. van Steensel B, Braunschweig U, Filion GJ, Chen M, van Bemmel JG, Ideker T (2010) Bayesian network analysis of targeting interactions in chromatin. Genome Res 20(2):190–200. doi:10.1101/gr.098822.109

    Article  PubMed  Google Scholar 

  34. Zhang Z, Song L, Maurer K, Petri MA, Sullivan KE (2009) Global H4 acetylation analysis by ChIP-chip in systemic lupus erythematosus monocytes. Genes Immun 11(2):124–133. doi:10.1038/gene.2009.66

    Article  PubMed  CAS  Google Scholar 

  35. Fischer JJ, Toedling J, Krueger T, Schueler M, Huber W, Sperling S (2008) Combinatorial effects of four histone modifications in transcription and differentiation. Genomics 91(1):41–51. doi:10.1016/j.ygeno.2007.08.010

    Article  PubMed  CAS  Google Scholar 

  36. Ellinger J, Kahl P, von der Gathen J, Rogenhofer S, Heukamp LC, Gutgemann I, Walter B, Hofstadter F, Buttner R, Muller SC, Bastian PJ, von Ruecker A (2010) Global levels of histone modifications predict prostate cancer recurrence. Prostate 70(1):61–69. doi:10.1002/pros.21038

    Article  PubMed  CAS  Google Scholar 

  37. Bonenfant D, Coulot M, Towbin H, Schindler P, van Oostrum J (2006) Characterization of histone H2A and H2B variants and their post-translational modifications by mass spectrometry. Mol Cell Proteomics 5(3):541–552. doi:10.1074/mcp.M500288-MCP200

    PubMed  CAS  Google Scholar 

  38. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  PubMed  CAS  Google Scholar 

  39. Vastenhouw NL, Zhang Y, Woods IG, Imam F, Regev A, Liu XS, Rinn J, Schier AF (2010) Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464(7290):922–926. doi:10.1038/nature08866

    Article  PubMed  CAS  Google Scholar 

  40. Rugg-Gunn PJ, Cox BJ, Ralston A, Rossant J (2010) Distinct histone modifications in stem cell lines and tissue lineages from the early mouse embryo. Proc Natl Acad Sci USA 107(24):10783–10790. doi:10.1073/pnas.0914507107

    Article  PubMed  CAS  Google Scholar 

  41. van der Heijden GW, Derijck AA, Ramos L, Giele M, van der Vlag J, de Boer P (2006) Transmission of modified nucleosomes from the mouse male germline to the zygote and subsequent remodeling of paternal chromatin. Dev Biol 298(2):458–469. doi:10.1016/j.ydbio.2006.06.051

    Article  PubMed  Google Scholar 

  42. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, Sivachenko A, Zhang X, Bernstein BE, Nusbaum C, Jaffe DB, Gnirke A, Jaenisch R, Lander ES (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770. doi:10.1038/nature07107

    PubMed  CAS  Google Scholar 

  43. Fan S, Zhang X (2009) CpG island methylation pattern in different human tissues and its correlation with gene expression. Biochem Biophys Res Commun 383(4):421–425. doi:10.1016/j.bbrc.2009.04.023

    Article  PubMed  CAS  Google Scholar 

  44. Zilberman D, Coleman-Derr D, Ballinger T, Henikoff S (2008) Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks. Nature 456(7218):125–129. doi:10.1038/nature07324

    Article  PubMed  CAS  Google Scholar 

  45. Li X, Wang X, He K, Ma Y, Su N, He H, Stolc V, Tongprasit W, Jin W, Jiang J, Terzaghi W, Li S, Deng XW (2008) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20(2):259–276. doi:10.1105/tpc.107.056879

    Article  PubMed  CAS  Google Scholar 

  46. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J, Nery JR, Lee L, Ye Z, Ngo QM, Edsall L, Antosiewicz-Bourget J, Stewart R, Ruotti V, Millar AH, Thomson JA, Ren B, Ecker JR (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462(7271):315–322. doi:10.1038/nature08514

    Article  PubMed  CAS  Google Scholar 

  47. Laird PW (2010) Principles and challenges of genome-wide DNA methylation analysis. Nat Rev Genet 11(3):191–203. doi:10.1038/nrg2732

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. Yaoping Lei and Jingyuan Fu for revising the manuscript. This work was supported in part by National Natural Science Foundation of China (61075023) and Natural Science Foundation of Heilongjiang Province (C201012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianzhong Su or Yan Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2011_910_MOESM1_ESM.doc

The relationship pairs between two regulators from the SET C with opposite signs of their Pearson correlation coefficient and partial correlation coefficient (doc 172 kb)

11033_2011_910_MOESM2_ESM.doc

Distribution of correlation coefficient value of all paired factors among 43 factors of SET C in 16 003 human gene promoters (doc 62 kb)

Indirect pathways of indirect factors to gene expression via direct factors from A1 to A22 (doc 1566 kb)

11033_2011_910_MOESM4_ESM.doc

Gene distribution and gene expression proportion of different combination patterns of the regulators in indirect pathway of indirect regulators respectively (doc 7056 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, J., Qi, Y., Liu, S. et al. Revealing epigenetic patterns in gene regulation through integrative analysis of epigenetic interaction network. Mol Biol Rep 39, 1701–1712 (2012). https://doi.org/10.1007/s11033-011-0910-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0910-3

Keywords

Navigation