Skip to main content
Log in

Age-related difference of site-specific histone modifications in rat liver

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Aging is associated with decrease in activities of the transcription, replication and DNA repair that can result in deterioration of cellular and tissue functions. Changes of chromatin structures with age are likely major underling mechanisms for the functional decline. Chromatin consists of DNA and histones as well as non-histone proteins. While age-associated change of DNA methylation is well documented, little information is available on site-specific histone modifications in aging. We studied here age-related change of selected modifications of rat liver histone, i.e., histone H3 Lys9 acetylation (H3K9ac), H3 Lys9 methylation (H3K9me), H3 Ser10 phosphorylation (H3S10ph) and H3 Lys14 acetylation (H3K14ac). H3K9ac was decreased and H3S10ph was increased with age significantly. In view of reports indicating that decrease in acetylation and increase in phosphorylation of H3 histones can suppress gene activity, our findings suggest that a mechanism of decreased chromatin functions with age is due to such epigenetic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agalioti T, Chen G, Thanos D (2002) Deciphering the transcriptional histone acetylation code for a human gene. Cell 111:381–392

    Article  PubMed  CAS  Google Scholar 

  • Attwood JT, Yung RL, Richardson BC (2002) DNA methylation and the regulation of gene transcription. Cell Mol Life Sci 59:241–257

    Article  PubMed  CAS  Google Scholar 

  • Bird A (2007) Perceptions of epigenetics. Nature 447:396–398

    Article  PubMed  CAS  Google Scholar 

  • Cheung P, Tanner KG, Cheung WL, Sassone-Corsi P, Denu JM, Allis CD (2000) Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol Cell 5:905–915

    Article  PubMed  CAS  Google Scholar 

  • Clayton AL, Hazzalin CA, Mahadevan LC (2006) Enhanced histone acetylation and transcription: a dynamic perspective. Mol Cell 23:289–296

    Article  PubMed  CAS  Google Scholar 

  • Commerford SL, Carsten AL, Cronkite EP (1982) Histone turnover within nonproliferating cells. Proc Natl Acad Sci USA 79:1163–1165

    Article  PubMed  CAS  Google Scholar 

  • Edmondson DG, Davie JK, Zhou J, Mirnikjoo B, Tatchell K, Dent SY (2002) Site-specific loss of acetylation upon phosphorylation of histone H3. J Biol Chem 277:29496–29502

    Article  PubMed  CAS  Google Scholar 

  • Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, Hunt DF, Funabiki H, Allis CD (2005) Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116–1122

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends Genet 23:413–418

    Article  PubMed  CAS  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  PubMed  CAS  Google Scholar 

  • Funayama R, Saito M, Tanobe H, Ishikawa F (2006) Loss of linker histone H1 in cellular senescence. J Cell Biol 175:869–880

    Article  PubMed  CAS  Google Scholar 

  • Ito T (2007) Role of histone modification in chromatin dynamics. J. Biochem. (Tokyo) 141:609–614

    CAS  Google Scholar 

  • Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Xiao H, Isobe K (2002) Histone acetyltransferase activities of cAMP-regulated enhancer-binding protein and p300 in tissues of fetal, young, and old mice. J Gerontol A Biol Sci Med Sci 57:B93–B98

    PubMed  Google Scholar 

  • Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, Jones PA (2004) Distinct localization of histone H3 acetylation and H3–K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 101:7357–7362

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Wylie RC, Andrews LG, Tollefsbol TO (2003) Aging, cancer and nutrition: the DNA methylation connection. Mech. Ageing Dev. 124:989–998

    Article  PubMed  CAS  Google Scholar 

  • Longo VD, Kennedy BK (2006) Sirtuins in aging and age-related disease. Cell 126:257–268

    Article  PubMed  CAS  Google Scholar 

  • Margueron R, Trojer P, Reinberg D (2005) The key to development: interpreting the histone code? Curr Opin Genet Dev 15:163–176

    Article  PubMed  CAS  Google Scholar 

  • Michishita E, McCord RA, Berber E, Kioi M, Padilla-Nash H, Damian M, Cheung P, Kusumoto R, Kawahara TL, Barrett JC, Chang HY, Bohr VA, Ried T, Gozani O, Chua KF (2008) SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin. Nature 452:492–496

    Article  PubMed  CAS  Google Scholar 

  • Narita M, Nunez S, Heard E, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW (2003) Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113:703–716

    Article  PubMed  CAS  Google Scholar 

  • Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  PubMed  CAS  Google Scholar 

  • Oberdoerffer P, Sinclair DA (2007) The role of nuclear architecture in genomic instability and ageing. Nat Rev Mol Cell Biol 8:692–702

    Article  PubMed  CAS  Google Scholar 

  • Oh YH, Conard RA (1972) Effect of aging on histone acetylation of the normal and regenerating rat liver. Life Sci II 11:1207–1214

    Article  PubMed  CAS  Google Scholar 

  • Richardson B (2003) Impact of aging on DNA methylation. Ageing Res Rev 2:245–261

    Article  PubMed  CAS  Google Scholar 

  • Roy AK, Oh T, Rivera O, Mubiru J, Song CS, Chatterjee B (2002) Impacts of transcriptional regulation on aging and senescence. Ageing Res Rev 1:367–380

    Article  PubMed  CAS  Google Scholar 

  • Sabbattini P, Canzonetta C, Sjoberg M, Nikic S, Georgiou A, Kemball-Cook G, Auner HW, Dillon N (2007) A novel role for the Aurora B kinase in epigenetic marking of silent chromatin in differentiated postmitotic cells. EMBO J 26:4657–4669

    Article  PubMed  CAS  Google Scholar 

  • Sarg B, Koutzamani E, Helliger W, Rundquist I, Lindner HH (2002) Postsynthetic trimethylation of histone H4 at lysine 20 in mammalian tissues is associated with aging. J Biol Chem 277:39195–39201

    Article  PubMed  CAS  Google Scholar 

  • Sedivy JM, Banumathy G, Adams PD (2008) Aging by epigenetics—a consequence of chromatin damage? Exp Cell Res 314:1909–1917

    Article  PubMed  CAS  Google Scholar 

  • Sharma R, Nakamura A, Takahashi R, Nakamoto H, Goto S (2006) Carbonyl modification in rat liver histones: decrease with age and increase by dietary restriction. Free Radic Biol Med 40:1179–1184

    Article  PubMed  CAS  Google Scholar 

  • Stewart MD, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment. Mol Cell Biol 25:2525–2538

    Article  PubMed  CAS  Google Scholar 

  • Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45

    Article  PubMed  CAS  Google Scholar 

  • Vakoc CR, Sachdeva MM, Wang H, Blobel GA (2006) Profile of histone lysine methylation across transcribed mammalian chromatin. Mol Cell Biol 26:9185–9195

    Article  PubMed  CAS  Google Scholar 

  • Van Remmen H, Ward WF, Sabia RV, Richardson A (1995) 9. Gene expression and protein degradation. In: Masoro EJ (ed) Handbook of physiology, Sect. 11: aging. Oxford University Press, New York, pp 171–234

    Google Scholar 

  • Vaquero A, Scher M, Lee D, Erdjument-Bromage H, Tempst P, Reinberg D (2004) Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin. Mol Cell 16:93–105

    Article  PubMed  CAS  Google Scholar 

  • Wang GG, Allis CD, Chi P (2007) Chromatin remodeling and cancer, part I: covalent histone modifications. Trends Mol Med 13:363–372

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by a Grant-in-Aid for Scientific Research and an “Open Research Center” Project from the Ministry of Education, Science, and Culture, Japan, and a Grant-in-Aid for Smoking Research Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sataro Goto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, K., Nakamura, A., Ishigami, A. et al. Age-related difference of site-specific histone modifications in rat liver. Biogerontology 10, 415–421 (2009). https://doi.org/10.1007/s10522-008-9176-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-008-9176-0

Keywords

Navigation