Skip to main content

Advertisement

Log in

Molecular cloning and expression analysis of a novel SANT/MYB gene from Gossypium barbadense

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MYB family transcription factors are implicated in multiple developmental processes. Herein, a new full-length cDNA encoding a SANT/MYB transcription factor (designated as GbRL2) was cloned and characterized from cotton (Gossypium barbadense L.) for the first time. The full-length cDNA of GbRL2 was 573 bp with a 240 bp open reading frame (ORF) encoding a deduced protein of 80 amino acid polypeptide with a calculated molecular mass of 8.96 kDa and an isoelectric point of 8.96. Sequence alignment revealed that GbRL2 had high homology with other single SANT/MYB domain containing genes, including the RADIALIS genes in Antirrhinum majus and Bournea leiophylla. Semi-quantitative reverse transcript polymerase chain reaction (RT-PCR) revealed that at seedling stage, GbRL2 was strongly expressed in leaves but merely in stems. In opening flowers, the expression of GbRL2 was moderate in the petals but could not be detected in stamens. In ovules, the expression of GbRL2 could not be detected at −3 days post-anthesis (DPA) but increased during early elongation stage (0 DPA, +3 DPA, +5 DPA and +8 DPA). The transcripts of GbRL2 could also be detected at +8 DPA elongating fibers. We also examined the expression of RL2 gene in Gossypium hirstum cultivar Xu-142 and its fuzzless-lintless-seed mutant fl plants. The GhRL2 gene was ectopically expressed at −3 DPA in the fl mutant while the expression of GhRL2 in WT could not be detected. The expression of GhRL2 decreased early (+5 DPA) while that of WT was still strong. Our results suggest that GbRL2 may participate in development of various organs and may be a target for genetic improvement of cotton fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ORF:

Open-reading frame

RT-PCR:

Reverse transcript polymerase chain reaction

DPA:

Days post-anthesis

RACE:

Rapid amplification of cDNA ends

References

  1. Basra A, Malik CP (1984) Development of the cotton fiber. Int Rev Cytol 89:65–113

    Article  CAS  Google Scholar 

  2. Tiwari SC, Wilkins TA (1995) Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Can J Bot 73:746–757

    Google Scholar 

  3. Wilkins TA, Jernstedt JA (1999) Molecular genetics of developing cotton fibers. In: Basra AM (ed) Cotton fibers. Hawthorne Press, New York, pp 231–267

    Google Scholar 

  4. Kim HJ, Triplett BA (2001) Cotton fiber growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis. Plant Physiol 127:1361–1366

    Article  PubMed  CAS  Google Scholar 

  5. Loguerico LL, Zhang JQ, Wilkins TA (1999) Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L.). Mol Gen Genet 261:660–671

    Article  PubMed  CAS  Google Scholar 

  6. Suo J, Liang X, Pu L, Zhang Y, Xue Y (2003) Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.). Biochim Biophys Acta 1630:25–34

    PubMed  CAS  Google Scholar 

  7. Pu L, Li Q, Fan X, Yang W, Xue Y (2008) The R2R3 MYB transcription factor GhMYB109 is required for cotton fiber development. Genetics 180:811–820

    Article  PubMed  CAS  Google Scholar 

  8. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    Article  PubMed  CAS  Google Scholar 

  9. Wu Y, Machado AC, White RG, Llewellyn DJ, Dennis ES (2006) Expression profiling identifies genes expressed early during lint fibre initiation in cotton. Plant Cell Physiol 47:107–127

    Article  PubMed  CAS  Google Scholar 

  10. Wu Y, Llewellyn DJ, White R, Ruggiero K, Al-Ghazi Y, Dennis ES (2007) Laser capture microdissection and cDNA microarrays used to generate gene expression profiles of the rapidly expanding fibre initial cells on the surface of cotton ovules. Planta 226:1475–1490

    Article  PubMed  CAS  Google Scholar 

  11. Machado AC, Wu YR, Yang YM, Llewellyn DJ, Dennis ES (2009) The MYB transcription factor GhMYB25 regulates early fibre and trichome development. Plant J 59:52–62

    Article  PubMed  CAS  Google Scholar 

  12. Barg R, Sobolev I, Eilon T, Gur A, Chmelnitsky I, Shabtai S, Grotewold E, Salts Y (2005) The tomato early fruit specific gene Lefsm1 defines anovel class of plant-specific SANT MYB domain proteins. Planta 221:197–211

    Article  PubMed  CAS  Google Scholar 

  13. Corley SB, Carpenter R, Copsey L, Coen E (2005) Floral asymmetry involves an interplay between TCP and MYB transcription factors in Antirrhinum. Proceedings of the National Academy of Sciences USA 102:5068–5073

    Article  CAS  Google Scholar 

  14. Costa MMR, Fox S, Hana AI, Baxter C, Coen E (2005) Evolution of regulatory interactions controlling floral asymmetry. Development 132:5093–5101

    Article  PubMed  CAS  Google Scholar 

  15. Almeida J, Rocheta M, Galego L (1997) Genetic control of flower shape in Antirrhinum majus. Development 124:1387–1392

    PubMed  CAS  Google Scholar 

  16. Galego L, Almeida J (2002) Role of DIVARICATA in the control of dorsoventral asymmetry in Antirrhinum flowers. Genes Dev 16:880–891

    Article  PubMed  CAS  Google Scholar 

  17. Baxter CE, Costa MM, Coen E (2007) Diversification and co-option of RAD-like genes in the evolution of floral asymmetry. Plant J 52:105–113

    Article  PubMed  CAS  Google Scholar 

  18. Zhou XR, Wang YZ, Smith JF, Chen R (2008) Altered expression patterns of TCP and MYB genes relating to the floral developmental transition from initial zygomorphy to actinomorphic in Bournea (Gesneriaceae). New Phytol 178:532–543

    Article  PubMed  CAS  Google Scholar 

  19. Pagnussat GC, Yu HJ, Ngo QA, Rajani S, Mayalagu S, Johnson CS, Capron A, Xie LF, Ye D, Sundaresan V (2005) Genetic and molecular identification of genes required for female gametophyte development and function in Arabidopsis. Development 132:603–614

    Article  PubMed  CAS  Google Scholar 

  20. Hamaguchi A, Yamashino T, Koizumi N, Kiba T, Kojima M, Sakakibara H, Mizuno T (2008) A small subfamily of Arabidopsis RADIALIS-LIKE SANT/MYB genes: a link to HOOKLESS1-mediated signal transduction during early morphogenesis. Biosci Biotechnol Biochem 72:2687–2696

    Article  PubMed  CAS  Google Scholar 

  21. Hasenfratz MP, Tsou CL, Wilkins TA (1995) Expression of two related vacuolar (H +)-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner. Plant Physiol 108:1395–1404

    Article  PubMed  CAS  Google Scholar 

  22. Lee J, Woodward A, Chen J (2007) Gene expression changes and early events in cotton fibre development. Ann Bot 100:1391–1401

    Article  PubMed  CAS  Google Scholar 

  23. Liu X, Zuo K, Zhang F, Li Y, Xu J, Zhang L, Sun X, Tang K (2009) Identification and expression profile of GbAGL2, a C-class gene from Gossypium barbadense. J Biosci 34:941–951

    Article  PubMed  CAS  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  25. Peitsch MC (1995) Protein modeling by E-Mail. Bio/Technology 13:658–660

    Article  CAS  Google Scholar 

  26. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  27. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Res 37:387–392

    Article  Google Scholar 

  28. Stevenson CE, Burton N, Costa M, Nath U, Dixon RA, Coen ES, Lawson DM (2005) Crystallization and preliminary X-ray analysis of the RAD protein from Antirrhinum majus. Acta Crystallogr Sect F Struct Biol Cryst Commun 61:885–888

    Article  PubMed  Google Scholar 

  29. Stevenson CE, Burton N, Costa MM, Nath U, Dixon RA, Coen ES, Lawson DM (2006) Crystal structure of the MYB domain of the RAD transcription factor from Antirrhinum majus. Proteins 65:1041–1045

    Article  PubMed  CAS  Google Scholar 

  30. Li CH, Zhu YQ, Meng YL, Wang JW, Xu KX, Zhang TZ, Chen XY (2002) Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR. Plant Sci 163:1113–1120

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the China National '973' Program on Key Basic Research Project (2007CB108805), transgenic plant project (2009 ZX08009-091B), 863 project (2008 AA 10Z 180) and Shanghai Leading Academic Discipline Project (B2009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, F., Liu, X., Zuo, K. et al. Molecular cloning and expression analysis of a novel SANT/MYB gene from Gossypium barbadense . Mol Biol Rep 38, 2329–2336 (2011). https://doi.org/10.1007/s11033-010-0366-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0366-x

Keywords

Navigation