Skip to main content

Advertisement

Log in

Identification and expression profile of GbAGL2, a C-class gene from G ossypium barbadense

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

An AGAMOUS (AG)-like gene, GbAGL2, was isolated from Gossypium barbadense and characterized. Alignment and phylogenetic analysis indicated that GbAGL2 shared high homology with AG-subfamily genes and belonged to a C-class gene family. DNA gel blot analysis showed that GbAGL2 belonged to a low-copy gene family. Reverse transcriptase-polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qPCR) revealed that GbAGL2 was highly expressed in reproductive tissues including ovules and carpels, but barely expressed in vegetative tissues. In addition, GbAGL2 expression in a cotton cultivar XuZhou142 (wt) (XZ142, G. hirsutum L.) and its fibreless mutant XZ142 (fl) was examined. RNA in situ hybridization analysis indicated that GbAGL2 transcripts were preferentially restricted to outer ovule integuments, carpels and fibres. These expression patterns implied that GbAGL2 might participate in the development of the carpel and ovule. Furthermore, Arabidopsis transformation was performed and modifications occurred in flowers, and the silique length of transgenic plants also increased slightly, suggesting that the GbAGL2 gene may have a positive effect on the development of the ovary or ovule. Our findings suggest that GbAGL2 might not only specify the identity of floral organs but also play a potential key role in ovary or fibre development in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AG:

AGAMOUS

bp:

base pair

dpa:

days post anthesis

fl:

fuzzless-lintless

RACE:

rapid amplification of cDNA end

qPCR:

quantitative real-time polymerase chain reaction

RT-PCR:

reverse transcription PCR

SEM:

scanning electron microscopy

Wt:

wild-type

XZ142:

XuZhou142

References

  • Basra A and Malik C P 1984 Development of the cotton fibre; Int. Rev. Cytol. 89 65–113

    Article  CAS  Google Scholar 

  • Bowman J L, Baum S F, Eshed Y, Putterill J and Alvarez J 1999 Molecular genetics of gynoecium development in Arabidopsis; Curr. Top. Dev. Biol. 45 155–205

    Article  CAS  PubMed  Google Scholar 

  • Bowman J L, Drews G N and Meyerowitz E M 1991a Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development; Plant Cell 3 749–758

    Article  CAS  PubMed  Google Scholar 

  • Bowman J L, Smyth D R and Meyerowitz E M 1991b Genetic interactions among floral homeotic genes of Arabidopsis; Development 112 1–20

    CAS  PubMed  Google Scholar 

  • Bradley D, Carpenter R, Sommer H, Hartley N and Coen E 1993 Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of Antirrhinum; Cell 72 85–95

    Article  CAS  PubMed  Google Scholar 

  • Chaidamsari T, Samanhudi, Sugiarti H, Santoso D, Angenent G C and de Maagd A R 2006 Isolation and characterization of an AGAMOUS homologue from cocoa; Plant Sci. 170 968–968

    Article  CAS  Google Scholar 

  • Clough S J and Bent A F 1998 Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana; Plant J. 16 735–743

    Article  CAS  PubMed  Google Scholar 

  • Coen E S, Romero J M, Doyle S, Elliott R, Murphy G and Carpenter R 1990 Floricaula: a homeotic gene required for flower development in Antirrhinum majus; Cell 63 1311–1322

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Motte P, Keck E, Saedler H, Sommer H and Schwarz-Sommer Z 1999 PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development; EMBO J. 18 4023–4034

    Article  CAS  PubMed  Google Scholar 

  • Drews G N, Bowman J L and Meyerowitz E M 1991 Negative regulation of the Arabidopsis homeotic gene AGAMOUS by the APETALA2 product; Cell 65 991–1002

    Article  CAS  PubMed  Google Scholar 

  • Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky M F, Kater M M and Colombo L 2003 MADSbox protein complexes control carpel and ovule development in Arabidopsis; Plant Cell 15 2603–2611

    Article  CAS  PubMed  Google Scholar 

  • Gao X M, Xia Y M and Li Q J 2006 Isolation of two putative homologues of PISTILLATA and AGAMOUS from Alpinia oblongifolia (Zingiberaceae) and characterization of their expression; Plant Sci. 170 674–684

    Article  CAS  Google Scholar 

  • Guo Y, Zhu Q, Zheng S and Li M 2007 Cloning of a MADS box gene (GhMADS3) from cotton and analysis of its homeotic role in transgenic tobacco; J. Genet. Genomics 34 527–535

    Article  CAS  PubMed  Google Scholar 

  • Hasenfratz M P, Tsou C L and Wilkins T A 1995 Expression of two related vacuolar (H+)-ATPase 16-kilodalton proteolipid genes is differentially regulated in a tissue-specific manner; Plant Physiol. 108 1395–1404

    Article  CAS  PubMed  Google Scholar 

  • Honma T and Goto K 2001 Complexes of MADS-box proteins are sufficient to convert leaves into floral organs; Nature (London) 409 525–529

    Article  CAS  Google Scholar 

  • Kim H J and Triplett B A 2001 Cotton fibre growth in planta and in vitro: models for plant cell elongation and cell wall biogenesis; Plant Physiol. 127 1361–1366

    Article  CAS  PubMed  Google Scholar 

  • Kitahara K, Hibino Y, Aida R and Matsumoto S 2004 Ectopic expression of the rose AGAMOUS-like MADS-box genes ‘MASAKO C1 and D1’ causes similar homeotic transformation of sepal and petal in Arabidopsis and sepal in Torenia; Plant Sci. 166 1245–1248

    Article  CAS  Google Scholar 

  • Kitahara K and Matsumoto S 2000 Rose MADS-box genes ‘MASAKO C1 and D1’ homologous to class C floral identity genes; Plant Sci. 151 121–134

    Article  CAS  PubMed  Google Scholar 

  • Kramer E M, Jaramillo M A and Di Stilio V S 2004 Patterns of gene duplication and functional evolution during the diversification of the AGAMOUS subfamily of MADS box genes in angiosperms; Genetics 166 1011–1023

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Tamura K and Nei M 2004 MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment; Brief Bioinform. 5 150–163

    Article  CAS  PubMed  Google Scholar 

  • Lightfoot D J, Malone K M, Timmis J N and Orford S J 2008 Evidence for alternative splicing of MADS-box transcripts in developing cotton fibre cells; Mol. Genet. Genomics 279 75–85

    Article  CAS  PubMed  Google Scholar 

  • Liljegren S J, Ditta G S, Eshed Y, Savidge B, Bowman J L and Yanofsky M F 2000 SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis; Nature (London) 404 766–770

    Article  CAS  Google Scholar 

  • Liu J, Huang Y, Ding B and Tauer C G 1999 cDNA cloning and expression of a sweetgum gene that shows homology with Arabidopsis AGAMOUS; Plant Sci. 142 73–82

    Article  CAS  Google Scholar 

  • Mizukami Y and Ma H 1992 Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity; Cell 71 119–131

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y and Ma H 1997 Determination of Arabidopsis floral meristem identity by AGAMOUS; Plant Cell 9 393–408

    Article  CAS  PubMed  Google Scholar 

  • Pinyopich A, Ditta G S, Savidge B, Liljegren S J, Baumann E, Wisman E and Yanofsky M F 2003 Assessing the redundancy of MADS-box genes during carpel and ovule development; Nature (London) 424 85–88

    Article  CAS  Google Scholar 

  • Pnueli L, Hareven D, Rounsley S D, Yanofsky M F and Lifschitz E 1994 Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants; Plant Cell 6 163–173

    Article  CAS  PubMed  Google Scholar 

  • Reid K E, Olsson N, Schlosser J, Peng F and Lund S T 2006 An optimized grapevine RNA isolation procedure and statistical determination of reference genes for real-time RT-PCR during berry development; BMC Plant Biol. 6 27

    Article  PubMed  Google Scholar 

  • Rigola D, Pe M E, Fabrizio C, Me G and Sari-Gorla M 1998 CaMADS1, a MADS box gene expressed in the carpel of hazelnut; Plant Mol. Biol. 38 1147–1160

    Article  CAS  PubMed  Google Scholar 

  • Rutledge R, Regan S, Nicolas O, Fobert P, Cote C, Bosnich W, Kauffeldt C, Sunohara G, Seguin A and Stewart D 1998 Characterization of an AGAMOUS homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis; Plant J. 15 625–634

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J and Russell D W 2001 in Molecular cloning: a laboratory manual, 3rd edition (New York: Cold Spring Harbour Laboratory Press)

    Google Scholar 

  • Smyth D R, Bowman J L and Meyerowitz E M 1990 Early flower development in Arabidopsis; Plant Cell 2 755–767

    Article  CAS  PubMed  Google Scholar 

  • Song I J, Nakamura T, Fukuda T, Yokoyama J, Ito T, Ichikawa H, Horikawa Y, Kameya T and Kanno A 2006 Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis; Dev. Genes Evol. 216 301–313

    Article  CAS  PubMed  Google Scholar 

  • Tandre K, Svenson M, Svensson M E and Engstrom P 1998 Conservation of gene structure and activity in the regulation of reproductive organ development of conifers and angiosperms; Plant J. 15 615–623

    Article  CAS  PubMed  Google Scholar 

  • Theissen G 2001 Development of floral organ identity: stories from the MADS house; Curr. Opin. Plant Biol. 4 75–85

    Article  CAS  PubMed  Google Scholar 

  • Theissen G, Becker A, Di Rosa A, Kanno A, Kim J T, Munster T, Winter K U and Saedler H 2000 A short history of MADS-box genes in plants; Plant Mol. Biol. 42 115–149

    Article  CAS  PubMed  Google Scholar 

  • Theissen G and Saedler H 1999 The golden decade of molecular floral development 1990–1999: a cheerful obituary; Dev. Genet. 25 181–193

    CAS  PubMed  Google Scholar 

  • Theissen G and Saedler H 2001 Plant biology — floral quartets; Nature (London) 409 469–471

    Article  CAS  Google Scholar 

  • Tiwari S C and Wilkins T A 1995 Cotton (Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism; Can. J. Bot. 73 746–757

    Google Scholar 

  • Tsuchimoto S, van der Krol A R and Chua N H 1993 Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant; Plant Cell 5 843–853

    Article  CAS  PubMed  Google Scholar 

  • Weigel D 1995 The genetics of flower development: from floral induction to ovule morphogenesis; Annu. Rev. Genet. 29 19–39

    Article  CAS  PubMed  Google Scholar 

  • Whittaker D J and Triplett B A 1999 Gene-specific changes in alpha-tubulin transcript accumulation in developing cotton fibres; Plant Physiol. 121 181–188

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Lee D Y, Miyao A, Hirochika H, An G and Hirano H Y 2006 Functional diversification of the two C-class MADS box genes OSMADS3 and OSMADS58 in Oryza sativa; Plant Cell 18 15–28

    Article  CAS  PubMed  Google Scholar 

  • Yanofsky M F, Ma H, Bowman J L, Drews G N, Feldmann K A and Meyerowitz E M 1990 The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors; Nature 346 35–39

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Additional information

Supplementary tables and figures pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/Dec2009/pp941-951/suppl.pdf

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X., Zuo, K., Zhang, F. et al. Identification and expression profile of GbAGL2, a C-class gene from G ossypium barbadense . J Biosci 34, 941–951 (2009). https://doi.org/10.1007/s12038-009-0108-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-009-0108-1

Keywords

Navigation