Skip to main content
Log in

Complete mitochondrial genome of the Chinese spiny lobster Panulirus stimpsoni (Crustacea: Decapoda): genome characterization and phylogenetic considerations

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The genetics and molecular biology of the commercially important Chinese spiny lobster, Panulirus stimpsoni are little known. Here, we present the complete mitochondrial genome sequence of P. stimpsoni, determined by the long polymerase chain reaction and primer walking sequencing method. The entire genome is 15,677 bp in length, encoding the standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes. The overall A + T content of the genome is 65.6%, lower than most malacostracan species. The gene order is consistent with the pancrustacean ground pattern. Several conserved elements were identified from P. stimpsoni control region, viz. one [TA(A)]n-block, two GA-blocks and three hairpin structures. However, the position of [TA(A)]n-block and number of hairpin structure are different from those in the congeneric P. japonicus and other decapods. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes do not support the monophyly of suborder Pleocyemata, which is in contrast to most morphological and molecular results. However, the position of Palinura and Astacidea is unstable, as represented by the basal or sister branches to other Reptantia species. P. stimpsoni, as the second species of Palinura with complete mitochondrial genome available, will provide important information on both genomics and conservation biology of the group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boore JL (1999) Animal mitochondrial genomes. Nucleic Acids Res 27:1767–1780. doi:10.1093/nar/27.8.1767

    Article  CAS  PubMed  Google Scholar 

  2. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216. doi:10.1016/S0074-7696(08)62066-5

    Article  CAS  PubMed  Google Scholar 

  3. Boore JL, Macey JR, Medina M (2005) Sequencing and comparing whole mitochondrial genomes of animals. Methods Enzymol 395:311–348. doi:10.1016/S0076-6879(05)95019-2

    Article  CAS  PubMed  Google Scholar 

  4. Kim SR, Kim MI, Hong MY, Kim KY, Kang PD, Hwang JS, Han YS, Jin BR, Kim I (2009) The complete mitogenome sequence of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae). Mol Biol Rep 36:1871–1880. doi:10.1007/s11033-008-9393-2

    Article  CAS  PubMed  Google Scholar 

  5. Liu Y, Cui Z (2009) Complete mitochondrial genome of the Asian paddle crab Charybdis japonica (Crustacea: Decapoda: Portunidae): gene rearrangement of the marine brachyurans and phylogenetic considerations of the decapods. Mol Biol Rep. doi:10.1007/s11033-009-9773-2

  6. Holthuis LB (1991) Marine Lobsters of the World. An annotated and illustrated catalogue of species of interest to fisheries known to date. FAO Species Catalogue 13:125. FAO, Rome

    Google Scholar 

  7. Wang KX, Wu QS, Ji CL (1996) Proliferation of Shrimps and Crab. China Agriculture Publisher, Beijing

    Google Scholar 

  8. Wei SQ (1985) Ontogenesis of the Chinese loster Panulirus stimpsoni (Holthuis). J Tropic Oceanogr 4:80–90

    Google Scholar 

  9. Chen ZQ, Chen CS, Wu ZQ, Gu LS, Ji DH (2000) Feeding habit of Chinese spiny lobster (Panulirus stimpsoni). Marine Fish Res 21:43–48

    Google Scholar 

  10. Chen ZQ, Chen CS, Huang YC, Huang ZL (2006) The growing characteristics and accelerating ways for growth of the spiny lobster, Panulirus stimpsoni. Marine Sci 30:25–31

    Google Scholar 

  11. Martin JW, Davis GE (2001) An updated classification of the recent crustacea. Natural History Museum of Los Angeles County, Los Angeles

    Google Scholar 

  12. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  13. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  14. Lavrov DV, Brown WM, Boore JL (2004) Phylogenetic position of the Pentastomida and (pan)crustacean relationships. Proc R Soc Lond B 271:537–544. doi:10.1098/rspb.2003.2631

    Article  Google Scholar 

  15. Boore JL, Brown WM (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17:87–106

    CAS  PubMed  Google Scholar 

  16. Cheng S, Chang SY, Gravitt P, Respess R (1994) Long PCR. Nature 369:684–685. doi:10.1038/369684a0

    Article  CAS  PubMed  Google Scholar 

  17. Ewing B, Green P (1998) Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194. doi:10.1101/gr.8.3.186

    CAS  PubMed  Google Scholar 

  18. Ewing B, Hillier L, Wendl M, Green P (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185. doi:10.1101/gr.8.3.175

    CAS  PubMed  Google Scholar 

  19. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202. doi:10.1101/gr.8.3.195

    CAS  PubMed  Google Scholar 

  20. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255. doi:10.1093/bioinformatics/bth352

    Article  CAS  PubMed  Google Scholar 

  21. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. doi:10.1093/nar/25.5.955

    Article  CAS  PubMed  Google Scholar 

  22. Zhang DX, Szymura JM, Hewitt GM (1995) Evolution and structural conservation of the control region of insect mitochondrial-DNA. J Mol Evol 40:382–391

    Article  CAS  PubMed  Google Scholar 

  23. Zhang DX, Hewitt GM (1997) Insect mitochondrial control region: a review of its structure, evolution and usefulness in evolutionary studies. Biochem Syst Ecol 25:99–120

    Article  Google Scholar 

  24. Kuhn K, Streit B, Schwenk K (2008) Conservation of structural elements in the mitochondrial control region of Daphnia. Gene 420:107–112. doi:10.1016/j.gene.2008.05.020

    Article  CAS  PubMed  Google Scholar 

  25. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH (2004) Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci USA 101:7287–7292. doi:10.1073/pnas.0401799101

    Article  CAS  PubMed  Google Scholar 

  26. Lohse M, Drechsel O, Bock R (2007) OrganellarGenomeDRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267–274. doi:10.1007/s00294-007-0161-y

    Article  CAS  PubMed  Google Scholar 

  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  28. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882. doi:10.1093/nar/25.24.4876

    Article  CAS  PubMed  Google Scholar 

  29. Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7. doi:10.1016/S1055-7903(02)00326-3

    Article  CAS  PubMed  Google Scholar 

  30. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

  31. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  32. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. doi:10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  33. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  34. Abascal F, Zardoya R, Posada D (2005) ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21:2104–2105. doi:10.1093/bioinformatics/bti263

    Article  CAS  PubMed  Google Scholar 

  35. Hua J, Li M, Dong P, Xie Q, Bu W (2009) The mitochondrial genome of Protohermes concolorus Yang et Yang 1988 (Insecta: Megaloptera: Corydalidae). Mol Biol Rep 36:1757–1765. doi:10.1007/s11033-008-9379-0

    Article  CAS  PubMed  Google Scholar 

  36. Zhang YY, Xuan WJ, Zhao JL, Zhu CD, Jiang GF (2009) The complete mitochondrial genome of the cockroach Eupolyphaga sinensis (Blattaria: Polyphagidae) and the phylogenetic relationships within the Dictyoptera. Mol Biol Rep. doi:10.1007/s11033-009-9944-1

  37. Yamauchi M, Miya M, Nishida M (2002) Complete mitochondrial DNA sequence of the Japanese spiny lobster, Panulirus japonicus (Crustacea: Decapoda). Gene 295:89–96. doi:10.1016/S0378-1119(02)00824-7

    Article  CAS  PubMed  Google Scholar 

  38. Shen X, Ren J, Cui Z, Sha Z, Wang B, Xiang J, Liu B (2007) The complete mitochondrial genomes of two common shrimps (Litopenaeus vannamei and Fenneropenaeus chinensis) and their phylogenomic considerations. Gene 403:98–109. doi:10.1016/j.gene.2007.06.021

    Article  CAS  PubMed  Google Scholar 

  39. Boore JL, Lavrov DV, Brown WM (1998) Gene translocation links insects and crustaceans. Nature 392:667–668

    Article  CAS  PubMed  Google Scholar 

  40. Yang JS, Nagasawa H, Fujiwara Y, Tsuchida S, Yang WJ (2008) The complete mitochondrial genome sequence of the hydrothermal vent galatheid crab Shinkaia crosnieri (Crustacea: Decapoda: Anomura): a noval arrangement and incomplete tRNA suite. BMC Genom 9:257. doi:10.1186/1471-2164-9-257

    Article  Google Scholar 

  41. Shen X, Sun M, Wu Z, Tian M, Cheng H, Zhao F, Meng X (2009) The complete mitochondrial genome of the ridgetail white prawn Exopalaemon carinicauda Holthuis, 1950 (Crustacean: Decapoda: Palaemonidae) revealed a novel rearrangement of tRNA gene. Gene 437:1–8. doi:10.1016/j.gene.2009.02.014

    Article  CAS  PubMed  Google Scholar 

  42. Miller AD, Austin CM (2006) The complete mitochondrial genome of the mantid shrimp Harpiosquilla harpax, and a phylogenetic investigation of the Decapoda using mitochondrial sequences. Mol Phylogenet Evol 38:565–574. doi:10.1016/j.ympev.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  43. Peregrino-Uriarte AB, Varela-Romero A, Muhlia-Almazan A, Anduro-Corona I, Vega-Heredia S, Gutierrez-Millan LE, De la Rosa-Velez J, Yepiz-Plascencia G (2009) The complete mitochondrial genomes of the yellowleg shrimp Farfantepenaeus californiensis and the blue shrimp Litopenaeus stylirostris (Crustacea: Decapoda). Comp Biochem Physiol D 4:45–53. doi:10.1016/j.cbd.2008.10.003

    Google Scholar 

  44. Shen X, Wang H, Ren J, Tian M, Wang M (2010) The mitochondrial genome of Euphausia superba (Prydz Bay) (Crustacea: Malacostraca: Euphausiacea) reveals a novel gene arrangement and potential molecular markers. Mol Biol Rep 37:771–784

    Article  CAS  PubMed  Google Scholar 

  45. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290:470–474

    Article  CAS  PubMed  Google Scholar 

  46. Saito S, Tamura K, Aotsuka T (2005) Replication origin of mitochondrial DNA in insects. Genetics 171:1695–1705. doi:10.1534/genetics.105.046243

    Article  CAS  PubMed  Google Scholar 

  47. Podsiadlowski L, Bartolomaeus T (2006) Major rearrangements characterize the mitochondrial genome of the isopod Idotea baltica (Crustacea: Peracarida). Mol Phylogenet Evol 40:893–899. doi:10.1016/j.ympev.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  48. Schram FR (1986) Crustacea. Oxford University Press, New York

    Google Scholar 

  49. Kim W, Abele LG (1990) Molecular phylogeny of selected decapod crustaceans based on 18S rRNA nucleotide sequences. J Crustacean Biol 10:1–13

    Article  CAS  Google Scholar 

  50. Abele LG (1991) Comparisons of morphological and molecular phylogeny of the Decapoda. Mem Qld Mus 31:101–108

    Google Scholar 

  51. Scholtz G, Richter S (1995) Phylogenetic systematics of the reptantian Decapoda (Crustacea, Malacostraca). Zool J Linn Soc 113:289–328

    Article  Google Scholar 

  52. Ahyong ST, O’Meally D (2004) Phylogeny of the Decapoda Reptantia: resolution using three molecular loci and morphology. Raff Bull Zool 52:673–693

    Google Scholar 

  53. Tsang LM, Ma KY, Ahyong ST, Chan T-Y, Chu KH (2008) Phylogeny of Decapoda using two nuclear protein-coding genes: origin and evolution of the Reptantia. Mol Phylogenet Evol 48:359–368. doi:10.1016/j.ympev.2008.04.009

    Article  CAS  PubMed  Google Scholar 

  54. Bracken H, Toon A, Felder D, Martin J, Finley M, Rasmussen J, Palero F, Crandall KA (2009) The Decapod tree of life: Compiling the data and moving toward a consensus of decapod evolution. Arthropod Syst Phylogenetics 67:99–116

    Google Scholar 

  55. Ivey JL, Santos SR (2007) The complete mitochondrial genome of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis, 1963 (Crustacea: Decapoda: Atyidae). Gene 394:35–44. doi:10.1016/j.gene.2007.01.009

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Chu Ka Hou for editorial comments on this manuscript, Prof. Xinzheng Li for specimen identification and Mr. Ping Zhang for assistance in bioinformatics analyses. This research was supported by the National Natural Science Foundation of China (No. 40676085, No. 40976088) and Chinese National ‘863’ Project (No. 2006AA10A406) to Dr. Zhaoxia Cui.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxia Cui.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 533 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Cui, Z. Complete mitochondrial genome of the Chinese spiny lobster Panulirus stimpsoni (Crustacea: Decapoda): genome characterization and phylogenetic considerations. Mol Biol Rep 38, 403–410 (2011). https://doi.org/10.1007/s11033-010-0122-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0122-2

Keywords

Navigation