Skip to main content
Log in

The mitochondrial genome of Protohermes concolorus Yang et Yang 1988 (Insecta: Megaloptera: Corydalidae)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The first complete mitochondrial genome of dobsonfly Protohermes concolorus Yang et Yang, 1988 (Megaloptera: Corydalidae) was sequenced in this study. The genome was a circular molecule of 15,851 bp containing the typical 37 genes that arranged in the same order as that of the putative ancestor of hexapods. Sequences overlaps were observed between several neighbor genes, which made the genome relatively compact. The tRNA-Ser (GCT) could not be folded into typical secondary structure because its DHU arm was replaced with a simple loop. Six of the 13 protein genes were terminated with a single T adjacent to a downstream tRNA gene in the same strand. The variation of GC content caused the different nucleotide substitution patterns of the protein genes. The genome was AT-biased with a total A + T content of 75.83% which was also demonstrated by the codon usage. The control region was the most AT-rich region with a sub-region of even higher A + T content. Protein genes of two strands presented opposite CG-skew trends which was also reflected by the codon usage. For most of the amino acids, the protein coding sequences did not prefer to use the cognate codons of corresponding tRNAs and the codon usage of the protein genes was not random. The variation of nucleotide substitution patterns of protein genes was significantly correlated with the GC content. The phylogenetic analyses based on all the 13 protein genes showed that Megaloptera was the sister group of other holometabolous insects except Coleoptera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Avise JA, Aronold J, Ball RM, Bermingham E, Neigel JE, Reeb CA et al (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst 18:489–522

    Google Scholar 

  2. Simon C, Frati F, Beckenbach A, Cresp B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    CAS  Google Scholar 

  3. Boore JL, Brown WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Curr Opin Genet Dev 8(6):668–674. doi:10.1016/S0959-437X(98)80035-X

    Article  PubMed  CAS  Google Scholar 

  4. Larget B, Simon DL, Kadane JB (2002) Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J R Stat Soc Ser B Stat Methodol 64:681–693. doi:10.1111/1467-9868.00356

    Article  Google Scholar 

  5. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, New York, NY

    Google Scholar 

  6. Cameron SL, Beckenbach AT, Dowton M, Whiting MF (2006) Evidence from mitochondrial genomics on interordinal relationships in insects. Arthropod Syst Phylogeny 64(1):27–34

    Google Scholar 

  7. Wheeler W (2001) Homology and the optimization of DNA sequence data. Cladistics 17(1):S3–S11. doi:10.1111/j.1096-0031.2001.tb00100.x

    Article  PubMed  CAS  Google Scholar 

  8. Whiting MF (2002) Phylogeny of the holometabolous insect orders based on 18S ribosomal DNA: when bad things happen to good data. In: DeSalle R, Giribet G, Wheeler W (eds) EXS (Basel) molecular systematics and evolution: theory and practice. Birkhaeuser Boston Birkhaeuser Publishing Ltd, Cambridge, pp 69–83

    Google Scholar 

  9. Whiting MF, Carpenter JC, Wheeler QD, Wheeler WC (1997) The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. Syst Biol 46(1):1–68. doi:10.2307/2413635

    PubMed  CAS  Google Scholar 

  10. Reineke A, Karlovsky P, Zebitz CP (1998) Preparation and purification of DNA from insects for AFLP analysis. Insect Mol Biol 7(1):95–99. doi:10.1046/j.1365-2583.1998.71048.x

    Article  PubMed  CAS  Google Scholar 

  11. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  12. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25(24):4876–4882. doi:10.1093/nar/25.24.4876

    Article  PubMed  CAS  Google Scholar 

  13. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25(5):955–964. doi:10.1093/nar/25.5.955

    Article  PubMed  CAS  Google Scholar 

  14. Peden JF (1999) Analysis of codon usage. University of Nottingham, UK

    Google Scholar 

  15. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755. doi:10.1093/bioinformatics/17.8.754

    Article  PubMed  CAS  Google Scholar 

  16. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:814–818. doi:10.1093/bioinformatics/14.9.817

    Article  Google Scholar 

  17. Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Assocates Inc, Sunderland, MA

    Google Scholar 

  18. Guindon S, Lethiec F, Duroux P, Gascuel O (2005) PHYML online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33(Web Server issue):W557–W559

    Article  PubMed  CAS  Google Scholar 

  19. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.2307/2408678

    Article  Google Scholar 

  20. Lavrov DV, Brown WM, Boore JL (2000) A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci USA 97(25):13738–13742. doi:10.1073/pnas.250402997

    Article  PubMed  CAS  Google Scholar 

  21. Stewart JB, Beckenbach AT (2005) Insect mitochondrial genomics: the complete mitochondrial genome sequence of the meadow spittlebug Philaenus spumarius (Hemiptera: Auchenorrhyncha: Cercopoidae). Genome 48(1):46–54. doi:10.1139/g04-090

    Article  PubMed  CAS  Google Scholar 

  22. Adams KL, Palmer JD (2003) Evolution of mitochondrial gene content: gene loss and transfer to the nucleus. Mol Phylogenet Evol 29(3):380–395. doi:10.1016/S1055-7903(03)00194-5

    Article  PubMed  CAS  Google Scholar 

  23. Podsiadlowski L, Braband A, Mayer G (2008) The complete mitochondrial genome of the onychophoran Epiperipatus biolleyi reveals a unique transfer RNA set and provides further support for the ecdysozoa hypothesis. Mol Biol Evol 25(1):42–51. doi:10.1093/molbev/msm223

    Article  PubMed  CAS  Google Scholar 

  24. Boore JL (2001) Complete mitochondrial genome sequence of the polychaete annelid Platynereis dumerilii. Mol Biol Evol 18(7):1413–1416

    PubMed  CAS  Google Scholar 

  25. Boore JL (2006) The complete sequence of the mitochondrial genome of Nautilus macromphalus (Mollusca: Cephalopoda). BMC Genom 7:182. doi:10.1186/1471-2164-7-182

    Article  Google Scholar 

  26. Boore JL, Brown WM (2000) Mitochondrial genomes of Galathealinum, Helobdella, and Platynereis: sequence and gene arrangement comparisons indicate that Pogonophora is not a phylum and Annelida and Arthropoda are not sister taxa. Mol Biol Evol 17(1):87–106

    PubMed  CAS  Google Scholar 

  27. Shao R, Campbell NJ, Schmidt ER, Barker SC (2001) Increased rate of gene rearrangement in the mitochondrial genomes of three orders of hemipteroid insects. Mol Biol Evol 18(9):1828–1832

    PubMed  CAS  Google Scholar 

  28. Wang X, Lavrov DV (2007) Mitochondrial genome of the homoscleromorph Oscarella carmela (Porifera, Demospongiae) reveals unexpected complexity in the common ancestor of sponges and other animals. Mol Biol Evol 24(2):363–373. doi:10.1093/molbev/msl167

    Article  PubMed  Google Scholar 

  29. Ojala D, Montoya J, Attardi G (1981) tRNA punctuation model of RNA processing in human mitochondria. Nature 290(5806):470–474. doi:10.1038/290470a0

    Article  PubMed  CAS  Google Scholar 

  30. Stanton DJ, Daehler LL, Moritz CC, Brown WM (1994) Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics 137(1):233–241

    PubMed  CAS  Google Scholar 

  31. Rand D (2001) Mitochondrial genomics flies high. Trends Ecol Evol 16(1):2–4. doi:10.1016/S0169-5347(00)02036-X

    Article  PubMed  Google Scholar 

  32. Rand DM (1993) Endotherms, ectotherms, and mitochondrial genome-size variation. J Mol Evol 37(3):281–295. doi:10.1007/BF00175505

    Article  PubMed  CAS  Google Scholar 

  33. Cook CE (2005) The complete mitochondrial genome of the stomatopod crustacean Squilla mantis. BMC Genom 6:105. doi:10.1186/1471-2164-6-105

    Article  Google Scholar 

  34. Wolstenholme DR (1992) Animal mitochondrial DNA: structure and evolution. Int Rev Cytol 141:173–216. doi:10.1016/S0074-7696(08)62066-5

    Article  PubMed  CAS  Google Scholar 

  35. Thao ML, Baumann L, Baumann P (2004) Organization of the mitochondrial genomes of whiteflies, aphids, and psyllids (Hemiptera, Sternorrhyncha). BMC Evol Biol 4:25. doi:10.1186/1471-2148-4-25

    Article  PubMed  Google Scholar 

  36. Kolpakov R, Bana G, Kucherov G (2003) mreps: Efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31(13):3672–3678. doi:10.1093/nar/gkg617

    Article  PubMed  CAS  Google Scholar 

  37. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402. doi:10.1093/nar/25.17.3389

    Article  PubMed  CAS  Google Scholar 

  38. Perna NT, Kocher TD (1995) Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. J Mol Evol 41(3):353–358. doi:10.1007/BF01215182

    Article  PubMed  CAS  Google Scholar 

  39. Hassanin A, Leger N, Deutsch J (2005) Evidence for multiple reversals of asymmetric mutational constraints during the evolution of the mitochondrial genome of metazoa, and consequences for phylogenetic inferences. Syst Biol 54(2):277–298. doi:10.1080/10635150590947843

    Article  PubMed  Google Scholar 

  40. Gibson A, Gowri-Shankar V, Higgs PG, Rattray M (2005) A comprehensive analysis of mammalian mitochondrial genome base composition and improved phylogenetic methods. Mol Biol Evol 22(2):251–264. doi:10.1093/molbev/msi012

    Article  PubMed  CAS  Google Scholar 

  41. Xia X (1996) Maximizing transcription efficiency causes codon usage bias. Genetics 144(3):1309–1320

    PubMed  CAS  Google Scholar 

  42. Marashi SA, Najafabadi HS (2004) How reliable re-adjustment is: correspondence regarding A. Fuglsang, The ‘effective number of codons’ revisited. Biochem Biophys Res Commun 324(1):1–2. doi:10.1016/j.bbrc.2004.08.213

    Article  PubMed  CAS  Google Scholar 

  43. Wright F (1990) The `effective number of codons’ used in a gene. Gene 87(1):23–29. doi:10.1016/0378-1119(90)90491-9

    Article  PubMed  CAS  Google Scholar 

  44. Kukalova-Peck J (1991) Fossil history and the evolution of hexapod structures. In: CSIRO (ed) The insects of Australia, vol 1, 2nd edn. Melbourne University Press, Carlton, pp 141–179

    Google Scholar 

  45. Boudreaux HB (1979) Arthropod phylogeny with special reference to insects. Wiley, New York

    Google Scholar 

  46. Kristensen NP (1991) Phylogeny of extant hexapods. In: CSIRO (ed) The insects of australia, vol 1, 2nd edn. Melbourne University Press, Carlton, pp 125–140

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Ding Yang and Dr. Xingyue Liu, China Agricultural University, for identifying the species of Megaloptera. This project was supported by Natural Science Foundation of China (No. 30725005 and No. J0630963), and by Ministry of Education of China (No. 20050055027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Bu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, J., Li, M., Dong, P. et al. The mitochondrial genome of Protohermes concolorus Yang et Yang 1988 (Insecta: Megaloptera: Corydalidae). Mol Biol Rep 36, 1757–1765 (2009). https://doi.org/10.1007/s11033-008-9379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9379-0

Keywords

Navigation