Skip to main content
Log in

MYBBP1A: a new Ipr1’s binding protein in mice

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Infection with mycobacterium tuberculosis (MTB) can cause different outcomes in hosts with variant genetic backgrounds. Previously, we identified an intracellular pathogen resistance 1 (Ipr1) gene with the role of resistance of MTB infection in mice model. However, until now, its binding proteins have been little known even for its human homology, SP110. In this study, the homology for mouse Ipr1 in canines was found to have an extra domain structure, h.1.5.1. And 30 potential candidate proteins were predicted to bind canine Ipr1, which were characterized of the interacting structure with the h.1.5.1. Among them, MYBBP1A was verified to bind with both Ipr1 and eGFP-Ipr1 in mouse macrophage J774A.1 clone 21 cells using co-immunoprecipitation method. And with the constructed high-confidence Ipr1-involved network, we suggested that Ipr1 might be involved in apoptosis pathway via MYBBP1A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kramnik I (2008) Genetic dissection of host resistance to mycobacterium tuberculosis: The sst1 locus and the Ipr1 gene. Curr Top Microbiol Immunol 321:123–148

    Article  CAS  PubMed  Google Scholar 

  2. Pan H, Yan BS, Rojas M, Shebzukhov YV, Zhou HW, Kobzik L, Higgins DE, Daly MJ, Bloom BR, Kramnik I (2005) Ipr1 gene mediates innate immunity to tuberculosis. Nature 434:767–772

    Article  CAS  PubMed  Google Scholar 

  3. Apt A, Kramnik I (2009) Man and mouse TB: contradictions and solutions. Tuberculosis 89:195–198

    Article  PubMed  Google Scholar 

  4. Liu L, Li Y, Lin J, Liang Q, Sheng X, Wu J, Huang R, Liu S (2009) Connexin43 interacts with Caveolin-3 in the heart. Mol Biol Rep 6. doi: 10.1007/s11033-009-9584-5

  5. Zheng D, Sun Y, Gu S, Ji C, Zhao W, Xie Y, Mao Y (2009) LNX (Ligand of Numb-protein X) interacts with RhoC, both of which regulate AP-1-mediated transcriptional activation. Mol Biol Rep 8. doi: 10.1007/s11033-009-9754-5

  6. Yang L, Liu N, Hu X, Zhang W, Wang T, Li H, Zhang B, Xiang S, Zhou J, Zhang J (2009) CK2 phosphorylates TNFAIP1 to affect its subcellular localization and interaction with PCNA. Mol Biol Rep 10. doi: 10.1007/s11033-009-9863-1

  7. Borutinskaite VV, Magnusson KE, Navakauskiene R (2010) alpha-Dystrobrevin distribution and association with other proteins in human promyelocytic NB4 cells treated for granulocytic differentiation. Mol Biol Rep 1. doi: 10.1007/s11033-010-9965-9

  8. Park J, Bolser D (2001) Conservation of protein interaction network in evolution. Genome Inform 12:135–140

    CAS  PubMed  Google Scholar 

  9. Aloy P, Russell RB (2003) InterPreTS: protein interaction prediction through tertiary structure. Bioinformatics 19:161–162

    Article  CAS  PubMed  Google Scholar 

  10. McGuffin LJ, Street SA, Bryson K, Sorensen SA, Jones DT (2004) The genomic threading database: a comprehensive resource for structural annotations of the genomes from key organisms. Nucleic Acids Res 32:D196–D199

    Article  CAS  PubMed  Google Scholar 

  11. Winter C, Henschel A, Kim WK, Schroeder M (2006) SCOPPI: a structural classification of protein–protein interfaces. Nucleic Acids Res 34:D310–D314

    Article  CAS  PubMed  Google Scholar 

  12. Pan H, Mostoslavsky G, Eruslanov E, Kotton DN, Kranmik I (2008) Dual-promoter lentiviral system allows inducible expression of noxious proteins in macrophages. J Immunol Methods 329:31–44

    Article  CAS  PubMed  Google Scholar 

  13. Jianmin Wu J, Ovaska Kristian, Westermarck Jukka, Tomi PM, Hautaniemi S (2009) Integrated network analysis platform for protein–protein interactions. Nat Methods 6:75–77

    Article  PubMed  Google Scholar 

  14. Lu L, Lu H, Skolnick J (2002) MULTIPROSPECTOR: an algorithm for the prediction of protein–protein interactions by multimeric threading. Proteins 49:350–364

    Article  CAS  PubMed  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G, Gene Ontology C (2000) Gene ontology: tool for the unification of biology. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  16. Collins MO, Husi H, Yu L, Brandon JM, Anderson CNG, Blackstock WP, Choudhary JS, Grant SGN (2006) Molecular characterization and comparison of the components and multiprotein complexes in the postsynaptic proteome. J Neurochem 97:16–23

    Article  CAS  PubMed  Google Scholar 

  17. Abul-Husn NS, Bushlin I, Moron JA, Jenkins SL, Dolios G, Wang R, Iyengar R, Ma’ayan A, Devi LA (2009) Systems approach to explore components and interactions in the presynapse. Proteomics 9:3303–3315

    Article  CAS  PubMed  Google Scholar 

  18. Jones LC, Okino ST, Gonda TJ, Whitlock JP (2002) Myb-binding protein 1a augments AhR-dependent gene expression. J Biol Chem 277:22515–22519

    Article  CAS  PubMed  Google Scholar 

  19. Fan M, Rhee J, St-Pierre J, Handschin C, Puigserver P, Lin JD, Jaeger S, Erdjument-Bromage H, Tempst P, Spiegelman BM (2004) Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1 alpha: modulation by p38 MAPK. Genes Dev 18:278–289

    Article  CAS  PubMed  Google Scholar 

  20. Tavner FJ, Simpson R, Tashiro S, Favier D, Jenkins NA, Gilbert DJ, Copeland NG, Macmillan EM, Lutwyche J, Keough RA, Ishii S, Gonda TJ (1998) Molecular cloning reveals that the p160 myb-binding protein is a novel, predominantly nucleolar protein which may play a role in transactivation by Myb. Mol Cell Biol 18:989–1002

    CAS  PubMed  Google Scholar 

  21. Bell DR, Poland A (2000) Binding of aryl hydrocarbon receptor (AhR) to AhR-interacting protein—the role of hsp90. J Biol Chem 275:36407–36414

    Article  CAS  PubMed  Google Scholar 

  22. Shin S, Wakabayashi N, Misra V, Biswal S, Lee GH, Agoston ES, Yamamoto M, Kensler TW (2007) NRF2 modulates aryl hydrocarbon receptor signaling: influence on adipogenesis. Mol Cell Biol 27:7188–7197

    Article  CAS  PubMed  Google Scholar 

  23. Wang F, Wang WL, Safe S (1999) Regulation of constitutive gene expression through interactions of Sp1 protein with the nuclear aryl hydrocarbon receptor complex. Biochemistry 38:11490–11500

    Article  CAS  PubMed  Google Scholar 

  24. Peng S, Lalani S, Leavenworth JW, Ho IC, Pauza ME (2007) c-Maf interacts with c-Myb to down-regulate Bcl-2 expression and increase apoptosis in peripheral CD4 cells. Eur J Immunol 37:2868–2880

    Article  CAS  PubMed  Google Scholar 

  25. Maurice D, Hooper J, Lang G, Weston K (2007) c-Myb regulates lineage choice in developing thymocytes via its target gene Gata3. EMBO J 26:3629–3640

    Article  CAS  PubMed  Google Scholar 

  26. Nomura T, Tanikawa J, Akimaru H, Kanei-Ishii C, Ichikawa-Iwata E, Khan MM, Ito H, Ishii S (2004) Oncogenic activation of c-Myb correlates with a loss of negative regulation by TIF1 beta and Ski. J Biol Chem 279:16715–16726

    Article  CAS  PubMed  Google Scholar 

  27. Yoshioka H, Geyer CB, Hornecker JL, Patel KT, McCarrey JR (2007) In vivo analysis of developmentally and evolutionarily dynamic protein–DNA interactions regulating transcription of the Pgk2 gene during mammalian spermatogenesis. Mol Cell Biol 27:7871–7885

    Article  CAS  PubMed  Google Scholar 

  28. Herzig S, Long FX, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001) CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179–183

    Article  CAS  PubMed  Google Scholar 

  29. Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong HJ, Accili D, Spiegelman BM (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1 alpha interaction. Nature 423:550–555

    Article  CAS  PubMed  Google Scholar 

  30. Finck BN, Gropler MC, Chen ZJ, Leone TC, Croce MA, Harris TE, Lawrence JC, Kelly DP (2006) Lipin 1 is an inducible amplifier of the hepatic PGC-1 alpha/PPAR alpha regulatory pathway. Cell Metab 4:199–210

    Article  CAS  PubMed  Google Scholar 

  31. Kawakami Y, Tsuda M, Takahashi S, Taniguchi N, Esteban CR, Zemmyo M, Furumatsu T, Lotz M, Belmonte JCI, Asahara H (2005) Transcriptional coactivator PGC-1 alpha regulates chondrogenesis via association with Sox9. Proc Natl Acad Sci USA 102:2414–2419

    Article  CAS  PubMed  Google Scholar 

  32. Garimella R, Liu X, Qiao W, Liang XY, Zuiderweg ERP, Riley MI, Van Doren SR (2006) Hsc70 contacts helix III of the J domain from polyomavirus T antigens: Addressing a dilemma in the chaperone hypothesis of how they release E2F from pRb. Biochemistry 45:6917–6929

    Article  CAS  PubMed  Google Scholar 

  33. Leshchyns’ka I, Sytnyk V, Richter M, Andreyeva A, Puchkov D, Schachner M (2006) The adhesion molecule CHL1 regulates uncoating of clathrin-coated synaptic vesicles. Neuron 52:1011–1025

    Article  PubMed  Google Scholar 

  34. Sugiki T, Taketomi Y, Kikuchi-Yanoshita R, Murakami M, Kudo I (2004) Association of N-myc downregulated gene 1 with heat-shock cognate protein 70 in mast cells. Biol Pharm Bull 27:628–633

    Article  CAS  PubMed  Google Scholar 

  35. Liu M, Chen XW, Jothi R (2009) Knowledge-guided inference of domain–domain interactions from incomplete protein–protein interaction networks. Bioinformatics 25:2492–2499

    Article  CAS  PubMed  Google Scholar 

  36. van den Berk LC, van Ham MA, te Lindert MM, Walma T, Aelen J, Vuister GW, Hendriks WJ (2004) The interaction of PTP-BL PDZ domains with RIL: an enigmatic role for the RIL LIM domain. Mol Biol Rep 31:203–215

    Article  PubMed  Google Scholar 

  37. Jiayu W, Zhu H, Ming X, Xiong W, Songbo W, Bocui S, Wensen L, Jiping L, Keying M, Zhongyi L, Hongwei G (2009) Mapping the interaction site of prion protein and Sho. Mol Biol Rep 8. doi: 10.1007/s11033-009-9722-0

  38. Lagunas L, Bradbury CM, Laszlo A, Hunt CR, Gius D (2004) Indomethacin and ibuprofen induce Hsc70 nuclear localization and activation of the heat shock response in HeLa cells. Biochem Biophys Res Commun 313:863–870

    Article  CAS  PubMed  Google Scholar 

  39. Dastoor Z, Dreyer JL (2000) Nuclear translocation and aggregate formation of heat shock cognate protein 70 (Hsc70) in oxidative stress and apoptosis. J Cell Sci 113:2845–2854

    CAS  PubMed  Google Scholar 

  40. Chung JY, Kim JY, Kim WR, Lee SG, Kim YJ, Park JE, Hong YP, Chun YJ, Park YC, Oh S, Yoo KS, Yoo YH, Kim JM (2007) Abundance of aryl hydrocarbon receptor potentiates benzo[a]pyrene-induced apoptosis in Hepa1c1c7 cells via CYP1A1 activation. Toxicology 235:62–72

    Article  CAS  PubMed  Google Scholar 

  41. Selvakumaran M, Lin HK, Sjin RTT, Reed JC, Liebermann DA, Hoffman B (1994) The novel primary response gene MYD118 and the protooncogenes Myb, Myc, and Bcl-2 modulate transforming growth factor-beta-1-induced apoptosis of myeloidleukemia cells. Mol Cell Biol 14:2352–2360

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge Dr. Gustavo Mostoslavsky for his advices on the construction of lentivirus vectors and Dr. Jianmin Wu for his advices on the construction of PPI networks. This work was supported by grants AI49421 and P01 AI056296 from the National Institutes of Health and by the National Basic Research Program of China (Grant No. 2009CB918700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1

Primary canine Ipr1’s candidate binding proteins (XLS 1249 kb)

Supplementary file 2

30 canine Ipr1’s potential binding candidate proteins (XLS 218 kb)

Supplementary file 3

The network function analysis results (XLS 34 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, L., Pan, H., Trzciński, K. et al. MYBBP1A: a new Ipr1’s binding protein in mice. Mol Biol Rep 37, 3863–3868 (2010). https://doi.org/10.1007/s11033-010-0042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0042-1

Keywords

Navigation