Skip to main content

Advertisement

Log in

A microarray study of altered gene expression in colorectal cancer cells after treatment with immunomodulatory drugs: differences in action in vivo and in vitro

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Thalidomide and lenalidomide are FDA approved for the treatment of multiple myeloma, and along with pomalidomide are being investigated in a variety of other cancers. Although these agents display immunomodulatory, anti-angiogenic and anti-apoptotic effects, little is known about the primary mode of therapeutic action in patients with cancer. This paper describes a microarray study of the in vitro and in vivo effects of these drugs, and contrasts the difference in gene profiles achieved in the two models. In the current study, Agilent whole mouse genome oligonucleotide microarrays (44 K) were used to examine alterations in gene expression of colorectal cancer cells after treatment. Venn analysis revealed a divergence of gene signature for pomalidomide and lenalidomide, which although similar in vitro, different in vivo. Several clusters of genes involved in various cellular processes such as immune response, cell signalling and cell adhesion were altered by treatment, and common to the three drugs. Notably, the expressions of linked genes within the Notch/Wnt signalling pathway, including kremen2 and dtx4, highlighted a possible novel mechanistic pathway for these drugs. This study also showed that gene signatures were not greatly divergent in the models, and recapitulated the complex nature of these drugs. Overall, these microarray studies highlighted the diversity of this class of drug, which have effects ranging from cell signalling to translation initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chanan-Khan AA, Cheson BD (2008) Lenalidomide for the treatment of B-cell malignancies. J Clin Oncol 26:1544–1552. doi:10.1200/JCO.2007.14.5367

    Article  CAS  PubMed  Google Scholar 

  2. Falco P, Cavallo F, Larocca A et al (2008) Lenalidomide and its role in the management of multiple myeloma. Expert Rev Anticancer Ther 8:865–874. doi:10.1586/14737140.8.6.865

    Article  CAS  PubMed  Google Scholar 

  3. Bartlett JB, Dredge K, Dalgleish AG (2004) The evolution of thalidomide and its IMiD derivatives as anticancer agents. Nat Rev Cancer 4:314–322. doi:10.1038/nrc1323

    Article  CAS  PubMed  Google Scholar 

  4. Dredge K, Horsfall R, Robinson SP et al (2005) Orally administered lenalidomide (CC-5013) is anti-angiogenic in vivo and inhibits endothelial cell migration and Akt phosphorylation in vitro. Microvasc Res 69:56–63. doi:10.1016/j.mvr.2005.01.002

    Article  CAS  PubMed  Google Scholar 

  5. Dredge K, Marriott JB, Macdonald CD et al (2002) Novel thalidomide analogues display anti-angiogenic activity independently of immunomodulatory effects. Br J Cancer 87:1166–1172. doi:10.1038/sj.bjc.6600607

    Article  CAS  PubMed  Google Scholar 

  6. Shalapour S, Zelmer A, Pfau M et al (2006) The thalidomide analogue, CC-4047, induces apoptosis signaling and growth arrest in childhood acute lymphoblastic leukemia cells in vitro and in vivo. Clin Cancer Res 12:5526–5532. doi:10.1158/1078-0432.CCR-06-0719

    Article  CAS  PubMed  Google Scholar 

  7. Verhelle D, Corral LG, Wong K et al (2007) Lenalidomide and CC-4047 inhibit the proliferation of malignant B cells while expanding normal CD34+ progenitor cells. Cancer Res 67:746–755. doi:10.1158/0008-5472.CAN-06-2317

    Article  CAS  PubMed  Google Scholar 

  8. Breitkreutz I, Raab MS, Vallet S, et al. (2008) Lenalidomide inhibits osteoclastogenesis, survival factors and bone-remodeling markers in multiple myeloma. Leukemia 22:1925–1932

    Article  CAS  PubMed  Google Scholar 

  9. Liu WM, Strauss SJ, Chaplin T et al (2004) s-thalidomide has a greater effect on apoptosis than angiogenesis in a multiple myeloma cell line. Hematol J 5:247–254. doi:10.1038/sj.thj.6200351

    Article  CAS  PubMed  Google Scholar 

  10. Galustian C, Meyer B, Labarthe MC, et al. (2008) The anti-cancer agents lenalidomide and pomalidomide inhibit the proliferation and function of T regulatory cells. Cancer Immunol Immunother 58:1033–1045

    Article  PubMed  Google Scholar 

  11. Liu WM, Henry JY, Meyer B, Bartlett JB, Dalgleish AG, Galustian C (in press) Inhibition of metastatic potential in colorectal carcinoma in vivo and in vitro using immunomodulatory drugs (IMiDs). Brit J Cancer

  12. Koh KR, Janz M, Mapara MY et al (2005) Immunomodulatory derivative of thalidomide (IMiD CC-4047) induces a shift in lineage commitment by suppressing erythropoiesis and promoting myelopoiesis. Blood 105:3833–3840. doi:10.1182/blood-2004-03-0828

    Article  CAS  PubMed  Google Scholar 

  13. Ota K, Matsui M, Milford EL et al (1990) T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 346:183–187. doi:10.1038/346183a0

    Article  CAS  PubMed  Google Scholar 

  14. Mastronardi FG, Moscarello MA (2005) Molecules affecting myelin stability: a novel hypothesis regarding the pathogenesis of multiple sclerosis. J Neurosci Res 80:301–308. doi:10.1002/jnr.20420

    Article  CAS  PubMed  Google Scholar 

  15. Sastry PS (1999) Inhibition of TNF-alpha synthesis with thalidomide for prevention of acute exacerbations and altering the natural history of multiple sclerosis. Med Hypotheses 53:76–77. doi:10.1054/mehy.1997.0719

    Article  CAS  PubMed  Google Scholar 

  16. Radtke F, Wilson A, Mancini SJ et al (2004) Notch regulation of lymphocyte development and function. Nat Immunol 5:247–253. doi:10.1038/ni1045

    Article  CAS  PubMed  Google Scholar 

  17. Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 5:21–30. doi:10.1038/nri1529

    Article  CAS  PubMed  Google Scholar 

  18. Li JL, Harris AL (2005) Notch signaling from tumor cells: a new mechanism of angiogenesis. Cancer Cell 8:1–3. doi:10.1016/j.ccr.2005.06.013

    Article  CAS  PubMed  Google Scholar 

  19. Katoh M (2007) Networking of WNT, FGF, Notch, BMP, and Hedgehog signaling pathways during carcinogenesis. Stem Cell Rev 3:30–38. doi:10.1007/s12015-007-0006-6

    Article  CAS  PubMed  Google Scholar 

  20. Taylor KL, Henderson AM, Hughes CC (2002) Notch activation during endothelial cell network formation in vitro targets the basic HLH transcription factor HESR-1 and downregulates VEGFR-2/KDR expression. Microvasc Res 64:372–383. doi:10.1006/mvre.2002.2443

    Article  CAS  PubMed  Google Scholar 

  21. Katoh M, Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045. doi:10.1158/1078-0432.CCR-06-2316

    Article  CAS  PubMed  Google Scholar 

  22. Aragon-Ching JB, Li H, Gardner ER et al (2007) Thalidomide analogues as anticancer drugs. Recent Patents Anticancer Drug Discov 2:167–174

    Article  CAS  Google Scholar 

  23. Wu L, Adams M, Carter T et al (2008) Lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20 + tumor cells. Clin Cancer Res 14:4650–4657. doi:10.1158/1078-0432.CCR-07-4405

    Article  CAS  PubMed  Google Scholar 

  24. Mitsiades N, Mitsiades CS, Poulaki V et al (2002) Apoptotic signaling induced by immunomodulatory thalidomide analogs in human multiple myeloma cells: therapeutic implications. Blood 99:4525–4530. doi:10.1182/blood.V99.12.4525

    Article  CAS  PubMed  Google Scholar 

  25. Hansen JM, Harris C (2004) A novel hypothesis for thalidomide-induced limb teratogenesis: redox misregulation of the NF-kappaB pathway. Antioxid Redox Signal 6:1–14. doi:10.1089/152308604771978291

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Lin X (2008) Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 41:1–8. doi:10.1016/j.cyto.2007.09.016

    Article  PubMed  Google Scholar 

  27. Elowitz MB, Levine AJ, Siggia ED et al (2002) Stochastic gene expression in a single cell. Science 297:1183–1186. doi:10.1126/science.1070919

    Article  CAS  PubMed  Google Scholar 

  28. Neildez-Nguyen TM, Parisot A, Vignal C et al (2008) Epigenetic gene expression noise and phenotypic diversification of clonal cell populations. Differentiation 76:33–40

    CAS  PubMed  Google Scholar 

  29. Bergers G, Brekken R, McMahon G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2:737–744. doi:10.1038/35036374

    Article  CAS  PubMed  Google Scholar 

  30. Liu WM (2008) Enhancing the cytotoxic activity of novel targeted therapies—is there a role for a combinatorial approach? Curr Clin Pharmacol 3:108–117. doi:10.2174/157488408784293714

    Article  CAS  PubMed  Google Scholar 

  31. Clarke PA, te Poele R, Workman P (2004) Gene expression microarray technologies in the development of new therapeutic agents. Eur J Cancer 40:2560–2591. doi:10.1016/j.ejca.2004.07.024

    Article  CAS  PubMed  Google Scholar 

  32. Burington B, Barlogie B, Zhan F et al (2008) Tumor cell gene expression changes following short-term in vivo exposure to single agent chemotherapeutics are related to survival in multiple myeloma. Clin Cancer Res 14:4821–4829. doi:10.1158/1078-0432.CCR-07-4568

    Article  CAS  PubMed  Google Scholar 

  33. Vallet S, Palumbo A, Raje N et al (2008) Thalidomide and lenalidomide: mechanism-based potential drug combinations. Leuk Lymphoma 49:1238–1245. doi:10.1080/10428190802005191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Ken Laing (Intracellular Pathogen Cooperative Group, St George’s University of London (SGUL), UK) for technical advice and Dr. Ian Giddings (Institute of Cancer Research, Sutton, UK) for useful discussions. The authors also acknowledge use of the gene microarray and PCR facilities in the Medical Biomics Centre at SGUL. This work was supported by the Cancer Vaccine Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wai M. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W.M., Laux, H., Henry, J.Y. et al. A microarray study of altered gene expression in colorectal cancer cells after treatment with immunomodulatory drugs: differences in action in vivo and in vitro. Mol Biol Rep 37, 1801–1814 (2010). https://doi.org/10.1007/s11033-009-9614-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9614-3

Keywords

Navigation