Skip to main content
Log in

Molecular characterization and chromosomal mapping of porcine brain and muscle Arnt-like protein-1 gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

As a transcription factor regulating circadian rhythm, brain and muscle Arnt-like protein-1 (BMAL1) plays an important role in lipid homeostasis. The Chinese indigenous and western pig breeds show marked difference in fat deposition, the structure and function of porcine BMAL1 (pBMAL1) between them might be different. In present study, the molecular characteristics and chromosomal location of pBMAL1 were analyzed. The results indicated that pBMAL1 cDNA had a coding region of 1,878 bp and shared 94.36, 89.85 and 89.79% identity with human, mouse and rat BMAL1, respectively, and the pBMAL1 protein had 99.20, 98.24 and 97.92% identity to those of human BMAL1b, mouse BMAL1b and rat BMAL1b, respectively. Compared with other mammals, pBMAL1 was more closely related to human BMAL1. The expression of pBMAL1 was detected in kidney, stomach, spleen, bladder, gallbladder, lumbar spinal cord, medulla oblongata, heart, longissimus dorsi muscle, liver, small intestine, large intestine, lung and backfat tissues. In adipose tissues, it was detected in mesentery fat, leaf fat, caul fat, backfat and cardiac fat, however, the expression level was not significantly different. Alternative usage of exon 2 was revealed to result in two pBMAL1 transcripts. Finally, by using a whole genome porcine radiation hybrid (RH) panel (IMpRH), the pBMAL1 gene was mapped to SSC 2p11-q21.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Moore RY (1997) Circadian rhythms: basic neurobiology and clinical applications. Annu Rev Med 48:253–266. doi:10.1146/annurev.med.48.1.253

    Article  CAS  PubMed  Google Scholar 

  2. Hogenesch JB, Gu YZ, Jain S, Bradfield CA (1998) The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci USA 95:5474–5479. doi:10.1073/pnas.95.10.5474

    Article  CAS  PubMed  Google Scholar 

  3. Takahata S, Sogawa K, Kobayashi A, Ema M, Mimura J, Ozaki N, Fujii-Kuriyama Y (1998) Transcriptionally active heterodimer formation of an Arnt-like PAS protein, Arnt3, with HIF-1a, HLF, and clock. Biochem Biophys Res Commun 248(3):789–794. doi:10.1006/bbrc.1998.9012

    Article  CAS  PubMed  Google Scholar 

  4. Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS, Bradfield CA (2000) Mop3 is an essential component of the master circadian pacemaker in mammals. Cell 103:1009–1017. doi:10.1016/S0092-8674(00)00205-1

    Article  CAS  PubMed  Google Scholar 

  5. Yu WJ, Ikeda M, Abe H, Honma S, Ebisawa T, Yamauchi T, Honma K, Nomura M (1999) Characterization of three splice variants and genomic organization of the mouse BMAL1 gene. Biochem Biophys Res Commun 260(3):760–767. doi:10.1006/bbrc.1999.0970

    Article  CAS  PubMed  Google Scholar 

  6. Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ (1998) Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569. doi:10.1126/science.280.5369.1564

    Article  CAS  PubMed  Google Scholar 

  7. Oishi K, Shirai H, Ishida N (2005) CLOCK is involved in the circadian transactivation of peroxisome proliferators-activated receptorα (PPARα) in mice. Biochem J 385:575–581. doi:10.1042/BJ20040863

    Article  Google Scholar 

  8. Inoue I, Shinoda Y, Ikeda M, Hayashi K, Kanazawa K, Nomura M, Matsunaga T, Xu H, Kawai S, Awata T, Komoda T, Katayama S (2005) CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J Atheroscler Thromb 12(3):169–174

    CAS  PubMed  Google Scholar 

  9. Aoyagi T, Shimba S, Tezuka M (2005) Characteristics of circadian gene expressions in mice white adipose tissue and 3T3–L1 adipocytes. J Health Sci 51:21–32. doi:10.1248/jhs.51.21

    Article  CAS  Google Scholar 

  10. Ikeda M, Nomura M (1997) cDNA cloning and tissue-specific expression of a novel basic helix-loop-helix/PAS protein (BMAL1) and identification of alternatively spliced variants with alternative translation initiation site usage. Biochem Biophys Res Commun 233(1):258–264. doi:10.1006/bbrc.1997.6371

    Article  CAS  PubMed  Google Scholar 

  11. Milan D, Hawken R, Cabau C, Leroux S, Genet C, Lahbib Y, Tosser G, Robic A, Hatey F, Alexander L, Beattie C, Schook L, Yerle M, Gellin J (2000) IMpRH server: an RH mapping server available on the web. Bioinformatics 16:558–559. doi:10.1093/bioinformatics/16.6.558

    Article  CAS  PubMed  Google Scholar 

  12. Shimba S, Ishii N, Ohta Y, Ohno T, Watabe Y, Hayashi M, Wada T, Aoyagi T, Tezuka M (2005) Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proc Natl Acad Sci USA 102(34):12071–12076. doi:10.1073/pnas.0502383102

    Article  CAS  PubMed  Google Scholar 

  13. Ando H, Yanagihara H, Hayashi Y, Obi Y, Tsuruoka S, Takamura T, Kaneko S, Fujimura A (2005) Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146(12):5631–5636. doi:10.1210/en.2005-0771

    Article  CAS  PubMed  Google Scholar 

  14. Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, RMynatt L, Gimble JM (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55:962–970. doi:10.2337/diabetes.55.04.06.db05-0873

    Article  CAS  PubMed  Google Scholar 

  15. Gómez-Abellán P, Hernández-Morante JJ, Luján JA, Madrid JA, Garaulet M (2008) Clock genes are implicated in the human metabolic syndrome. Int J Obes 32(1):121–128. doi:10.1038/sj.ijo.0803689

    Article  CAS  Google Scholar 

  16. Chong NW, Chaurasia SS, Haque R, Klein DC, Iuvone PM (2003) Temporal–spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, and peripheral tissues. J Neurochem 85:851–860

    Article  CAS  PubMed  Google Scholar 

  17. Rettenberger G, Bruch J, Fries R, Archibald AL, Hameister H (1996) Assignment of 19 porcine type I loci by somatic cell hybrid analysis detects new regions of conserved synteny between human and pig. Mamm Genome 7(4):275–279. doi:10.1007/s003359900082

    Article  CAS  PubMed  Google Scholar 

  18. Jeon JT, Carlbory O, Törnsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundström K, Andersson L (1999) A paterally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nat Genet 21:157–158. doi:10.1038/5938

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Yerle M at INRA, Laboratoire de Génétique Cellulaire in France for giving us radiation hybrid panels and Dr Meiyi Tang for valuable suggestions and revisions of the manuscript. This work was supported by grants from “863” high-tech research and development program of China (No. 2006AA10Z1E1 and No. 2007AA10Z153).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunliang Jiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xing, J., Xu, Q., Li, K. et al. Molecular characterization and chromosomal mapping of porcine brain and muscle Arnt-like protein-1 gene. Mol Biol Rep 36, 2423–2430 (2009). https://doi.org/10.1007/s11033-009-9473-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9473-y

Keywords

Navigation