Skip to main content

Advertisement

Log in

Paternity assessment: application on estimation of breeding value in body-weight at first egg trait of egg-laying duck (Anas platyrhynchos)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Paternity index was analyzed using five microsatellite loci among Chinese egg-laying ducks (Anas platyrhynchos). Based on the paternity relationship that was identified by paternity index analysis, the estimated breeding value (EBV) was calculated using BLUP (best linear unbiased predictor) method. Body weight at first egg (BWF) is the only considered trait in this study. In total, 12 sires, 31 dams and 77 daughters were involved in the EBV calculation. The results demonstrated that five microsatellite loci’s polymorphism information content (PIC) ranged from 0.795 in locus AY493338 to 0.957 in locus AY493264 with average 0.899; the parent–offspring relationships were built by these microsatellites’ genotype, 12 families of half sibling and 2 families of full sibling were involved, and the relationship error is smaller than 10−7. The EBV results suggest that the average EBV was significantly higher in females (average EBV is 10.234 and 0.1045 for mother and daughter, respectively) than males (average EBV is just −26.44). The EBV results on BWF were in good agreement with the principle of GH (growth hormone) expression in poultry. These results show that paternity analyses of Chinese egg-laying ducks were basically resolved using the five microsatellite loci selected. The paternity relationships can apply in Chinese egg-laying duck breeding to quicken the improvement of genetic progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

EBV:

Estimated breeding value

BWF:

Body weight at first egg

BLUP:

Best linear unbiased predictor

GH:

Growth hormone

PAGE:

Poli-acrylamide gel electrophoresis

References

  1. Estimated breeding value. In: Saunders comprehensive veterinary dictionary. Elsevier. http://medical-dictionary.thefreedictionary.com/breeding+value

  2. Mallard B, Wilkie B, Kennedy B, Quinton M (1992) Use of estimated breeding values in a selection index to breed Yorkshire pigs for high and low immune and innate resistance factors. Anim Genet Breed 3(2):257–280

    Google Scholar 

  3. Geldermann H, Pieper U, Weber W (1986) Effect of misidentification on the estimation of breeding value and heritability in cattle. J Anim Sci 63:1759–1768

    CAS  PubMed  Google Scholar 

  4. Belonsky G, Kennedy B (1988) Selection on individual phenotype and best linear unbiased predictor of breeding value in a closed swine herd. J Anim Sci 66:1124–1131

    CAS  PubMed  Google Scholar 

  5. Waldbieser GC, Brian G, Danny J et al (2001) A microsatellite-based genetic linkage map for channel catfish, Ictalurus punctatus. Genetics 158:727–734

    CAS  PubMed  Google Scholar 

  6. Knijff P, Kayser M, Caglià A et al (1997) Chromosome Y microsatellites: population genetic and evolutionary aspects. Int J Legal Med 110:134–140. doi:10.1007/s004140050052

    Article  PubMed  Google Scholar 

  7. Miranda M, Hammock EA et al (2004) Vole species as an animal model for the evolution of social behavior: from genes to brain to behavior. Acta Zool Sin 50(4):479–489

    Google Scholar 

  8. Hammock EAD, Larry J (2004) Functional microsatellite polymorphism associated with divergent social structure in vole species. Mol Biol Evol 21(6):1057–1063. doi:10.1093/molbev/msh104

    Article  CAS  PubMed  Google Scholar 

  9. Denk G, Gautschi B, Carter K, Kempenaers B (2004) Seven polymorphic microsatellite loci for paternity assessment in the mallard (Anas platyrhynchos). Mol Ecol Notes 4:506–508. doi:10.1111/j.1471-8286.2004.00707.x

    Article  CAS  Google Scholar 

  10. Martin A, Bernhard M, Gabriele U (2008) Effects of body size of both sexes and female mating history on male mating behaviour and paternity success in a spider. Anim Behav 76:75–86. doi:10.1016/j.anbehav.2008.01.011

    Article  Google Scholar 

  11. Tian F, Sun D, Zhang Y (2008) Establishment of paternity testing system using microsatellite markers in Chinese Holstein. J Genet Genomics 35:279–284. doi:10.1016/S1673-8527(08)60040-5

    Article  CAS  PubMed  Google Scholar 

  12. Van Zeveren A, Peelman L, Van De Weghe A et al (1995) A genetic study of four Belgian pig populations by means of seven microsatellites loci. Anim Breed Genet 112:191–204

    Google Scholar 

  13. Luikart G, Biju-Duval M, Ertugrul O et al (1999) Power of 22 microsatellite markers in fluorescent multiplexes for parentage testing in goats (Capra hircus). Anim Genet 30(6):431–438. doi:10.1046/j.1365-2052.1999.00545.x

    Article  CAS  PubMed  Google Scholar 

  14. Ellegren H, Johansson M, Sandberg K et al (1992) Cloning of highly polymorphic microsatellites in the horse. Anim Genet 23:133–142

    Article  CAS  PubMed  Google Scholar 

  15. Huang Y, Zhao Y, Haley CS et al (2006) A genetic and cytogenetic map for the duck (Anas platyrhynchos). Genetics 173:287–296. doi:10.1534/genetics.105.053256

    Article  CAS  PubMed  Google Scholar 

  16. Long T, Johnson R, Keele J (1990) Effects of errors in pedigree on three methods of estimating breeding value for litter size, backfat and average daily gain in swine. J Anim Sci 68:4069–4078

    CAS  PubMed  Google Scholar 

  17. Reverter A, Golden B, Bourdon R et al (1994) Method R variance components procedure: application on the simple breeding value model. J Anim Sci 72:2247–2253

    CAS  PubMed  Google Scholar 

  18. Frary A, Clint NT, Frary A et al (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88. doi:10.1126/science.289.5476.85

    Article  CAS  PubMed  Google Scholar 

  19. Su Y, Long R, Chen G et al (2007) Genetic analysis of six endangered local duck populations in China based on microsatellite markers. J Genet Genomics 34(11):1010–1018. doi:10.1016/S1673-8527(07)60114-3

    Article  CAS  PubMed  Google Scholar 

  20. Sruoga A, Svazas S, Butkauskas D et al (2005) Long-term genetic investigations background for research on wildfowl populations in the changing environmental conditions. Acta Zool Lituanica 15(2):1392–1657

    Google Scholar 

  21. Khan Ahmadi A, Rahimi G, Vafaei A et al (2007) Microsatellite analysis of genetic diversity in Pekin (Anas platyrhynchos) and Muscovy (Cairina moschata) duck populations. Int J Poult Sci 6(5):378–382

    Article  Google Scholar 

  22. Ivan B, Mladen M, Davor L et al (2003) How high should paternity index be for reliable identification of war victims by DNA typing? Croat Med J 44:322–326

    Google Scholar 

  23. Lewis P, Perry G, Morris T (1997) Effect of size and timing of photoperiod increase on age at first egg and subsequent performance of two breeds of laying hen. Br Poult Sci 38:142–150. doi:10.1080/00071669708417959

    Article  CAS  PubMed  Google Scholar 

  24. Nestor K, Noble D (1995) Influence of selection for increased egg production, body weight, and shank width of turkeys on egg composition and the relationship of the egg traits to hatchability. Am Poult Sci 74(3):427–433

    CAS  Google Scholar 

  25. Akbaş Y, Takma Ç (2005) Canonical correlation analysis for studying the relationship between egg production traits and body weight, egg weight and age at sexual maturity in layers. Czech J Anim Sci 50(4):163–168

    Google Scholar 

  26. Koerhuis A, McKay J (1996) Restricted maximum likelihood estimation of genetic parameters for egg production traits in relation to juvenile body weight in broiler chickens. Livest Prod Sci 46:117–127. doi:10.1016/0301-6226(96)00018-8

    Article  Google Scholar 

  27. Bingxue Y, Xuemei D, Changxin W et al (2003) Single nucleotide polymorphism analysis in chicken growth hormone gene and its associations with growth and carcass traits. Chin Sci Bull 48(15):1561–1564. doi:10.1360/02wc0379

    Article  CAS  Google Scholar 

  28. Hrabia A, Paczoska-Eliasiewicz HE, Berghman LR et al (2003) Expression and localization of growth hormone and its receptors in the chicken ovary during sexual maturation. Cell Tissue Res 332:317–328. doi:10.1007/s00441-008-0595-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Supported by Chinese National Key Technology R&D Program during the 11th five-years plan period (No.2006BAD14B06); Doctoral funds of Northwest A&F University; Significant Science and Technical project of Zhejiang Province (2005C12005-01); Significant International Collaboration Project of Zhejiang Province (2006C14015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaolin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, J., Lu, L., Liu, X. et al. Paternity assessment: application on estimation of breeding value in body-weight at first egg trait of egg-laying duck (Anas platyrhynchos). Mol Biol Rep 36, 2175–2181 (2009). https://doi.org/10.1007/s11033-008-9432-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9432-z

Keywords

Navigation