Skip to main content

Advertisement

Log in

Stabilization of hepatocyte growth factor mRNA by hypoxia-inducible factor 1

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Hypoxia regulates expression of hepatocyte growth factor (HGF) by increasing its transcription and by stabilizing its mRNA. Despite the pivotal role of hypoxia-inducible factor 1 (HIF-1) in transcriptional activation of hypoxia-responsive genes, it is not known whether HIF-1 mediates hypoxia-induced stabilization of HGF mRNA. We constructed adenoviral vectors expressing either the wild-type HIF-1α (Ad2/HIF-1α/FL), a constitutively stable hybrid form of HIF-1α (Ad2/HIF-1α/VP16), or no transgene (Ad2/CMVEV). In rat glioma (C6) cells, human glioma (U251) cells human cardiac, vascular smooth muscle, and endothelial cells, infection with Ad2/HIF-1α/VP16 or Ad2/HIF-1α/FL increased HGF expression at both the mRNA and protein levels. Under normoxic conditions, the half-life of HGF mRNA was 43 min in C6 and U251 cells. Hypoxia and Ad2/HIF-1α/VP16 increased the half-life of HGF mRNA to 3.2 and 2.8 h, respectively, while Ad2/CMVEV had no effect. These studies are the first to demonstrate that overexpression of HIF-1α increases HGF mRNA stability. Our results also suggest that stabilization of HGF mRNA by hypoxia is mediated, at least in part, by HIF-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bunn HF, Poyton RO (1996) Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 76:839–885

    PubMed  CAS  Google Scholar 

  2. Guillemin K, Krasnow MA (1997) The hypoxic response: huffing and HIFing. Cell 89:9–12. doi:10.1016/S0092-8674(00)80176-2

    Article  PubMed  CAS  Google Scholar 

  3. Semenza GL (2001) HIF-1, O2, and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107:1–3. doi:10.1016/S0092-8674(01)00518-9

    Article  PubMed  CAS  Google Scholar 

  4. Wang GL, Jiang BH, Rue EA, Semenza GL (1995) Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 92:5510–5514. doi:10.1073/pnas.92.12.5510

    Article  PubMed  CAS  Google Scholar 

  5. Huang LE, Gu J, Schau M, Bunn HF (1998) Regulation of hypoxia-inducible factor 1α is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95:7987–7992. doi:10.1073/pnas.95.14.7987

    Article  PubMed  CAS  Google Scholar 

  6. Salceda S, Caro J (1997) Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272:22642–22647. doi:10.1074/jbc.272.36.22642

    Article  PubMed  CAS  Google Scholar 

  7. Sutter CH, Laughner E, Semenza GL (2000) Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci USA 97:4748–4753. doi:10.1073/pnas.080072497

    Article  PubMed  CAS  Google Scholar 

  8. Hara S, Nakashiro K, Klosek SK, Ishikawa T, Shintani S, Hamakawa H (2006) Hypoxia enhances c-Met/HGF receptor expression and signaling by activating HIF-1alpha in human salivary gland cancer cells. Oral Oncol 42:593–598. doi:10.1016/j.oraloncology.2005.10.016

    Article  PubMed  CAS  Google Scholar 

  9. Koga F, Tsutsumi S, Neckers LM (2007) Low dose geldanamycin inhibits hepatocyte growth factor and hypoxia-stimulated invasion of cancer cells. Cell Cycle 6:1393–1402

    PubMed  CAS  Google Scholar 

  10. Peruzzi B, Athauda G, Bottaro DP (2006) The von Hippel–Lindau tumor suppressor gene product represses oncogenic beta-catenin signaling in renal carcinoma cells. Proc Natl Acad Sci USA 103:14531–14536. doi:10.1073/pnas.0606850103

    Article  PubMed  CAS  Google Scholar 

  11. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe PJ (1999) The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275. doi:10.1038/20459

    Article  PubMed  CAS  Google Scholar 

  12. Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC, Maher ER, Pugh CW, Ratcliffe PJ, Maxwell PH (2000) Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J Biol Chem 275:25733–25741. doi:10.1074/jbc.M002740200

    Article  PubMed  CAS  Google Scholar 

  13. Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW (2000) Activation of HIF1alpha ubiquitination by a reconstituted von Hippel–Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 97:10430–11043. doi:10.1073/pnas.190332597

    Article  PubMed  CAS  Google Scholar 

  14. Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG (2000) Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2:423–427. doi:10.1038/35017054

    Article  PubMed  CAS  Google Scholar 

  15. Tanimoto K, Makino Y, Pereira T, Poellinger L (2000) Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel–Lindau tumor suppressor protein. EMBO J 19:4298–4309. doi:10.1093/emboj/19.16.4298

    Article  PubMed  CAS  Google Scholar 

  16. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG (2001) HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468. doi:10.1126/science.1059817

    Article  PubMed  CAS  Google Scholar 

  17. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim Av, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472. doi:10.1126/science.1059796

    Article  PubMed  CAS  Google Scholar 

  18. Masson N, Willam C, Maxwell PH, Pugh CW, Ratcliffe PJ (2001) Independent function of two destruction domains in hypoxia-inducible factor-alpha chains activated by prolyl hydroxylation. EMBO J 20:5197–5206. doi:10.1093/emboj/20.18.5197

    Article  PubMed  CAS  Google Scholar 

  19. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ (2001) C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54. doi:10.1016/S0092-8674(01)00507-4

    Article  PubMed  CAS  Google Scholar 

  20. Sabri MN, DiSciascio G, Cowley MJ, Alpert D, Vetrovec GW (1991) Coronary collateral recruitment: functional significance and relation to rate of vessel closure. Am Heart J 121:876–880. doi:10.1016/0002-8703(91)90202-S

    Article  PubMed  CAS  Google Scholar 

  21. Tacchini L, Matteucci E, De Ponti C, Desiderio MA (2003) Hepatocyte growth factor signaling regulates transactivation of genes belonging to the plasminogen activation system via hypoxia inducible factor-1. Exp Cell Res 290:391–401. doi:10.1016/S0014-4827(03)00348-3

    Article  PubMed  CAS  Google Scholar 

  22. Colgan SM, Mukherjee S, Major P (2007) Hypoxia-induced lactate dehydrogenase expression and tumor angiogenesis. Clin Colorectal Cancer 6:442–446. doi:10.3816/CCC.2007.n.014

    Article  PubMed  CAS  Google Scholar 

  23. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, Pasquale LR, Thieme H, Iwamoto MA, Park JE (1994) Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N Engl J Med 331:1480–1487. doi:10.1056/NEJM199412013312203

    Article  PubMed  CAS  Google Scholar 

  24. Chu SH, Yuan XH, Jiang PC, Li ZQ, Zhang J, Wen ZH, Zhao SY, Chen XJ, Cao CJ (2005) The expression of hepatocyte growth factor and its receptor in brain astromas. Zhonghua Yi Xue Za Zhi 85:835–838

    PubMed  CAS  Google Scholar 

  25. Chu SH, Yuan XH, Jiang PC, Zhang J, Li ZQ, Cao CJ, Wen ZH (2005) Expression of hepatocyte growth factor and its receptor mRNA in brain astrocytomas. Tumor 25:173–176

    CAS  Google Scholar 

  26. Chu SH, Yuan XH, Jiang PC, Li ZQ, Wen ZH (2005) The relevance of HGF, c-Met, PCNA and CD34 with glioma malignant degree and prognosis. Chin J Neuromed 4:1208–1212

    Google Scholar 

  27. Chu SH, Yuan XH, Jiang PC, Li ZQ, Zhang J, Wen ZH (2005) Recombinant human hepatocyte growth factor in cellular apoptosis of glioma induced by mitomycin C. Chin J Neuromed 4:1093–1096

    Google Scholar 

  28. Jiang PC, Chu SH, Yuan XH (2006) The c-metprotooncogene antisense oligodeoxynucleotide enhances the sensitivity of glioma cell U251 to mitomycin C. Chin J Exp Surg 23:540–542

    CAS  Google Scholar 

  29. Chu SH, Zhu ZA, Yuan XH, Li ZQ, Jiang PC (2006) In vitro and in vivo potentiating the cytotoxic effect of radiation on human U251 gliomas by the c-Met antisense oligodeoxynucleotides. J Neurooncol 80:143–149. doi:10.1007/s11060-006-9174-5

    Article  PubMed  CAS  Google Scholar 

  30. Chu SH, Yuan XH, Li ZQ, Jiang PC, Zhang J (2006) c-Met antisense oligodeoxynucleotide inhibits growth of glioma cells. Surg Neurol 65:533–538. doi:10.1016/j.surneu.2005.11.024

    Article  PubMed  Google Scholar 

  31. Chu SH, Zhang H, Ma YB, Feng DF, Yuan XH, Li ZQ (2007) c-Met antisense oligodeoxynucleotides as a novel therapeutic agent for glioma: in vitro and in vivo studies of uptake, effects and toxicity. J Surg Res 141:284–288. doi:10.1016/j.jss.2006.11.011

    Article  PubMed  CAS  Google Scholar 

  32. Chu SH, Ma YB, Zhang H, Feng DF, Zhu ZA, Li ZQ, Yuan XH (2007) Hepatocyte growth factor production is stimulated by gangliosides and TGF-beta isoforms in human glioma cells. J Neurooncol 85:33–38. doi:10.1007/s11060-007-9387-2

    Article  PubMed  CAS  Google Scholar 

  33. Pennacchietti S, Michieli P, Galluzzo M, Mazzone M, Giordano S, Comoglio PM (2003) Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell 3:347–361. doi:10.1016/S1535-6108(03)00085-0

    Article  PubMed  Google Scholar 

  34. Ross J (1995) mRNA stability in mammalian cells. Microbiol Rev 59:423–450

    PubMed  CAS  Google Scholar 

  35. Paulding WR, Czyzyk-Krzeska MF (2000) Hypoxia induced regulation of mRNA stability. Adv Exp Med Biol 475:111–121. doi:10.1007/0-306-46825-5-11

    Article  PubMed  CAS  Google Scholar 

  36. Vincent KA, Shyu K, Luo Y, Magner M, Tio RA, Jiang C, Goldberg MA, Akita GY, Gregory RJ, Isner JM (2000) Angiogenesis is induced in a rabbit model of hindlimb ischemia by naked DNA encoding a HIF-1α/VP16 hybrid transcriptional factor. Circulation 102:2255–2261

    PubMed  CAS  Google Scholar 

  37. Jiang C, Lu H, Vincent KA, Shankara S, Belanger AJ, Cheng SH, Akita GY, Kelly RA, Goldberg MA, Gregory RJ (2002) Gene expression profiles in human cardiac cells subjected to hypoxia or expressing a hybrid form of HIF-1α. Physiol Genomics 8:23–32

    PubMed  CAS  Google Scholar 

  38. Livak KJ, Flood SJ, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl 4:357–362

    PubMed  CAS  Google Scholar 

  39. Lindholm D, Heumann R, Hengerer B, Thoenen H (1998) Interleukin 1 increases stability and transcription of mRNA encoding nerve growth factor in cultured rat fibroblasts. J Biol Chem 263:16348–16351

    Google Scholar 

  40. Eckerich C, Zapf S, Fillbrandt R, Loges S, Westphal M, Lamszus K (2007) Hypoxia can induce c-Met expression in glioma cells and enhance SF/HGF-induced cell migration. Int J Cancer 121:276–283. doi:10.1002/ijc.22679

    Article  PubMed  CAS  Google Scholar 

  41. Scarpino S, Cancellario d’Alena F, Di Napoli A, Pasquini A, Marzullo A, Ruco LP (2004) Increased expression of Met protein is associated with up-regulation of hypoxia inducible factor-1 (HIF-1) in tumour cells in papillary carcinoma of the thyroid. J Pathol 202:352–358. doi:10.1002/path.1522

    Article  PubMed  CAS  Google Scholar 

  42. Markel TA, Crisostomo PR, Wang M, Herring CM, Lahm T, Meldrum KK, Lillemoe KD, Rescorla FJ, Meldrum DR (2007) Iron chelation acutely stimulates fetal human intestinal cell production of IL-6 and VEGF while decreasing HGF: the roles of p38, ERK, and JNK MAPK signaling. Am J Physiol Gastrointest Liver Physiol 292:G958–G963. doi:10.1152/ajpgi.00502.2006

    Article  PubMed  CAS  Google Scholar 

  43. Goldberg MA, Dunning SP, Bunn HF (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein. Science 242:1412–1415. doi:10.1126/science.2849206

    Article  PubMed  CAS  Google Scholar 

  44. Wang GL, Semenza GL (1995) Desferrioxamine induces erythropoietin gene expression and hypoxia-inducible factor 1 DNA-binding activity: implications for models of hypoxia signal transduction. Proc Natl Acad Sci USA 92:5510–5514. doi:10.1073/pnas.92.12.5510

    Article  PubMed  CAS  Google Scholar 

  45. Tacchini L, Dansi P, Matteucci E, Desiderio MA (2001) Hepatocyte growth factor signalling stimulates hypoxia inducible factor-1 (HIF-1) activity in HepG2 hepatoma cells. Carcinogenesis 22:1363–1371. doi:10.1093/carcin/22.9.1363

    Article  PubMed  CAS  Google Scholar 

  46. Xu N, Chen CY, Shyu AB (1997) Modulation of the fate of cytoplasmic mRNA by AU-rich elements: key sequence features controlling mRNA deadenylation and decay. Mol Cell Biol 17:4611–4621

    PubMed  CAS  Google Scholar 

  47. Bernasconi NL, Wormhoudt TA, Laird-Offringa IA (2000) Post-transcriptional deregulation of myc genes in lung cancer cell lines. Am J Respir Cell Mol Biol 23:560–565

    PubMed  CAS  Google Scholar 

  48. Hamawy AH, Lee LY, Crystal RG, Rosengart TK (1999) Cardiac angiogenesis and gene therapy: a strategy for myocardial revascularization. Curr Opin Cardiol 14:515–522. doi:10.1097/00001573-199911000-00012

    Article  PubMed  CAS  Google Scholar 

  49. Yumoto A, Fukushima Kusano K, Nakamura K, Hashimoto K, Aoki M, Morishita R, Kaneda Y, Ohe T (2005) Hepatocyte growth factor gene therapy reduces ventricular arrhythmia in animal models of myocardial ischemia. Acta Med Okayama 59:73–78

    PubMed  CAS  Google Scholar 

  50. Jin H, Wyss JM, Yang R, Schwall R (2004) The therapeutic potential of hepatocyte growth factor for myocardial infarction and heart failure. Curr Pharm Des 10:2525–2533. doi:10.2174/1381612043383863

    Article  PubMed  CAS  Google Scholar 

  51. Satani K, Konya H, Hamaguchi T, Umehara A, Katsuno T, Ishikawa T, Kohri K, Hasegawa Y, Suehiro A, Kakishita E, Namba M (2006) Clinical significance of circulating hepatocyte growth factor, a new risk marker of carotid atherosclerosis in patients with Type 2 diabetes. Diabet Med 23:617–622. doi:10.1111/j.1464-5491.2006.01849.x

    Article  PubMed  CAS  Google Scholar 

  52. Hata N, Matsumori A, Yokoyama S, Ohba T, Shinada T, Yoshida H, Tokuyama K, Imaizumi T, Mizuno K (2004) Hepatocyte growth factor and cardiovascular thrombosis in patients admitted to the intensive care unit. Circ J 68:645–649. doi:10.1253/circj.68.645

    Article  PubMed  CAS  Google Scholar 

  53. Zou HY, Li Q, Lee JH, Arango ME, McDonnell SR, Yamazaki S, Koudriakova TB, Alton G, Cui JJ, Kung PP, Nambu MD, Los G, Bender SL, Mroczkowski B, Christensen JG (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417. doi:10.1158/0008-5472.CAN-06-4443

    Article  PubMed  CAS  Google Scholar 

  54. Ma H, Calderon TM, Fallon JT, Berman JW (2002) Hepatocyte growth factor is a survival factor for endothelial cells and is expressed in human atherosclerotic plaques. Atherosclerosis 164:79–87. doi:10.1016/S0021-9150(02)00062-X

    Article  PubMed  CAS  Google Scholar 

  55. Takahashi T, Huynh-Do U, Daniel TO (1998) Renal microvascular assembly and repair: power and promise of molecular definition. Kidney Int 53:826–835. doi:10.1111/j.1523-1755.1998.00822.x

    Article  PubMed  CAS  Google Scholar 

  56. Parr C, Jiang WG (2006) Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer 119:1176–1183. doi:10.1002/ijc.21881

    Article  PubMed  CAS  Google Scholar 

  57. Ide T, Kitajima Y, Miyoshi A, Ohtsuka T, Mitsuno M, Ohtaka K, Koga Y, Miyazaki K (2006) Tumor-stromal cell interaction under hypoxia increases the invasiveness of pancreatic cancer cells through the hepatocyte growth factor/c-Met pathway. Int J Cancer 119:2750–2759. doi:10.1002/ijc.22178

    Article  PubMed  CAS  Google Scholar 

  58. Morisada T, Oike Y, Yamada Y, Urano T, Akao M, Kubota Y, Maekawa H, Kimura Y, Ohmura M, Miyamoto T, Nozawa S, Koh GY, Alitalo K, Suda T (2005) Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood 105:4649–4656. doi:10.1182/blood-2004-08-3382

    Article  PubMed  CAS  Google Scholar 

  59. Thurston G, Suri C, Smith K, McClain J, Sato TN, Yancopoulos GD, McDonald DM (1999) Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science 286:2511–2514. doi:10.1126/science.286.5449.2511

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank professor Hong Wang at Henry Ford Hospital for critical reading of the paper. This work was supported by a grant 07JWYQ03 from the Training Excellent Youth Teacher Scientific Research Foundation of University of Shanghai, a grant 07XYQ01 from the Excellent Youth Teacher Scientific Research Foundation of Shanghai Jiao Tong University of School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Hua Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, SH., Feng, DF., Ma, YB. et al. Stabilization of hepatocyte growth factor mRNA by hypoxia-inducible factor 1. Mol Biol Rep 36, 1967–1975 (2009). https://doi.org/10.1007/s11033-008-9406-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9406-1

Keywords

Navigation