Skip to main content

Advertisement

Log in

Centrifugal forces within usually-used magnitude elicited a transitory and reversible change in proliferation and gene expression of osteoblastic cells UMR-106

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Centrifugation is an important step in biochemical and molecular biological researches. But the effects of centrifugal stress on cells are still unclear. In this study, osteoblastic cells UMR-106 were subjected to a moderate centrifugal stress at 209 × g for 10 min. Then the cell proliferation and gene transcription after centrifugation were analyzed with flow cytometry and Real-time RT-PCR techniques, respectively. The result showed that the cell proliferation and mRNA expression of Runx2/Cbfa1, Collagen I and osteocalcin changed shortly after centrifugal loading, but recovered to pre-load levels within 24 h. A dose-response study of exposure cells to centrifugal force at 209, 253 and 301 × g showed that the centrifugal forces within usually-used range can rapidly influenced the mRNA expression of the osteoblast-specific genes, but no statistical differences were found among the three centrifugal magnitudes. And the fast regulation in the investigated genes was proved to be related to increased c-fos mRNA levels and subsequent activation of RTK and integrity of cytoskeleton construction. The result showed that the osteoblastic cells displayed a fast auto-regulation to usually-used centrifugal stress through multiple signal pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alenghat FJ, Ingber DE (2002) Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins. Sci STKE 119:PE6

    Google Scholar 

  2. Fitzgerald J, Hughes-Fulford M (1999) Mechanically induced c-fos expression is mediated by cAMP in M3T3-E1osteoblasts. FASEB J 13:553–557

    PubMed  CAS  Google Scholar 

  3. Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109

    Article  PubMed  CAS  Google Scholar 

  4. Kaspar D, Seidl W, Neidlinger-Wilke C et al (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35:873–880

    Article  PubMed  Google Scholar 

  5. Masella RS, Meister M (2006) Current concepts in the biology of orthodontic tooth movement. Am J Orthod Dentofacial Orthop 129:458–468

    Article  PubMed  Google Scholar 

  6. Goga Y, Chiba M, Shimizu Y et al (2006) Compressive force induces osteoblast apoptosis via caspase-8. J Dent Res 85:240–244

    Article  PubMed  CAS  Google Scholar 

  7. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  8. Brown TD (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14

    Article  PubMed  CAS  Google Scholar 

  9. Inoue H, Nakamura O, Duan Y et al (1993) Effect of centrifugal force on growth of mouse osteoblastic MC3T3-E1 cells in vitro. J Dent Res 72:1351–1355

    PubMed  CAS  Google Scholar 

  10. Lee DH, Park JC, Suh H (2001) Effect of centrifugal force on cellular activity of osteoblastic MC3T3-E1 cells in vitro. Yonsei Med J 42:405–410

    PubMed  CAS  Google Scholar 

  11. Fitzgerald J, Hughes-Fulford M (1996) Gravitational loading of a simulated launch alters mRNA expression in osteoblasts. Exp Cell Res 228:168–171

    Article  PubMed  CAS  Google Scholar 

  12. Baumert U, Golan I, Becker B et al (2004) Pressure simulation of orthodontic force in osteoblasts: a pilot study. Orthod Craniofac Res 7:3–9

    Article  PubMed  CAS  Google Scholar 

  13. Nose K, Shibanuma M (1994) Induction of early response genes by hypergravity in cultured mouse osteoblastic cells (MC3T3-E1). Exp Cell Res 211:168–170

    Article  PubMed  CAS  Google Scholar 

  14. Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140

    Article  PubMed  CAS  Google Scholar 

  15. Glanstchnig H, Varga F, Rumpler M et al (1996) Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur J Clin Invest 26:544–548

    Article  PubMed  CAS  Google Scholar 

  16. Li J, Chen G, Zheng L et al (2007) Osteoblast cytoskeletal modulation in response to compressive stress at physiological levels. Mol Cell Biochem 304:45–52

    Article  PubMed  CAS  Google Scholar 

  17. Chen X, He Q, Liu W et al (2000) AP-1 mediated signal transduction in thrombin-induced regulation of PAL-1 expression in human mesangial cells. Chin Med J (Engl) 113:514–519

    CAS  Google Scholar 

  18. Heinrich R, Kraiem Z (1997) The protein kinase A pathway inhibits c-jun and c-fos protooncogene expression induced by the protein kinase C and tyrosine kinase pathways in cultured human thyroid follicles. J Clin Endocrinol Metab 82:1839–1844

    Article  PubMed  CAS  Google Scholar 

  19. Ferraro JT, Daneshmand M, Bizios R et al (2004) Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am J Physiol Cell Physiol 286:C831–C839

    Article  PubMed  CAS  Google Scholar 

  20. Koike M, Shimokawa H, Kanno Z et al (2005) Effects of mechanical strain on proliferation and differentiation of bone marrow stromal cell line ST2. J Bone Miner Metab 23:219–225

    Article  PubMed  Google Scholar 

  21. Tang L, Lin Z, Li YM (2006) Effects of different magnitudes of mechanical strain on Osteoblasts in vitro. Biochem Biophys Res Commun 344:122–128

    Article  PubMed  CAS  Google Scholar 

  22. Ducy P, Zhang R, Geoffroy V et al (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89:747–754

    Article  PubMed  CAS  Google Scholar 

  23. Ducy P, Desbois C, Boyce B et al (1996) Increased bone formation in osteocalcin-deficient mice. Nature 382:448–452

    Article  PubMed  CAS  Google Scholar 

  24. Glanstchnig H, Varga F, Rumpler M et al (1996) Prostacyclin (PGI2): a potential mediator of c-fos expression induced by hydrostatic pressure in osteoblastic cells. Eur J Clin Invest 26:544–548

    Article  PubMed  CAS  Google Scholar 

  25. Manfred S (1982) Action of cytochalasin D on cytoskeletal networks. J Cell Biol 92:79–91

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by grants from the National Nature Science Foundation of China numbered 10402027 and 30470436.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihe Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Jiang, L., Liao, G. et al. Centrifugal forces within usually-used magnitude elicited a transitory and reversible change in proliferation and gene expression of osteoblastic cells UMR-106. Mol Biol Rep 36, 299–305 (2009). https://doi.org/10.1007/s11033-007-9179-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-007-9179-y

Keywords

Navigation