Skip to main content

Advertisement

Log in

Osteoblast cytoskeletal modulation in response to compressive stress at physiological levels

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Biomechanical force is one of the major epigenetic factors that determine the form and differentiation of skeletal tissues. In this study, osteoblastic cells UMR-106 were exposed to compressive forces at 1000 μstrain and 4000 μstrain via a four-point bending system, and analyzed by MTT and LSCM techniques. Cell proliferation activity decreased shortly after loading but recovered to normal levels within 24 h. And the cytoskeleton depolymerized at first, but then gradually repolymerized. To find out the role of cytoskeleton in mechanotransduction, we examined the relationship between cytoskeleton construction and c-fos expression. A transient stress-induced upregulation in c-fos mRNA and c-Fos protein was discovered when cells were exposed to physiological forces. And the upregulation in c-fos expression was blocked by cytochalasin D (Depolymerizing agent of microfilament). It gave clues that the organization of cytoskeleton was an important link in transcriptional control in response to low-mechanical stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ducy P, Schinke T, Karsenty G (2000) The osteoblast: a sophisticated fibroblast under central surveillance. Science 289:1501–1504

    Article  PubMed  CAS  Google Scholar 

  2. Katsumi A, Orr AW, Tzima E et al (2004) Integrins in mechanotransduction. J Biol Chem 279:12001–12004

    Article  PubMed  CAS  Google Scholar 

  3. Hughes-Fulford M, Fitzgerald J (1999) Mechanically induced c-fos expression is mediated by cAMP in M3T3-E1osteoblasts. FASEB J 13:553–557

    PubMed  Google Scholar 

  4. Akisaka T, Yoshida H, Inoue S et al (2001) Organization of cytoskeletal F-actin, G-actin, and gelsolin in the adhesion structures in cultured osteoclast. J Bone Miner Res 16:1248–1255

    Article  PubMed  CAS  Google Scholar 

  5. Hughes-Fulford M, Lewis ML (1996) Effects of microgravity on osteoblast growth activation. Exp Cell Res 224:103–109

    Article  PubMed  CAS  Google Scholar 

  6. Meazzini MC, Toma CD, Schaffer JL et al (1998) Osteoblast cytoskeletal modulation in response to mechanical strain in vitro. J Orthop Res 16:170–180

    Article  PubMed  CAS  Google Scholar 

  7. Carvalho RS, Bumann A, Schaffer JL et al (2002) Predominant integrin ligands expressed by osteoblasts show preferential regulation in response to both cell adhesion and mechanical perturbation. J Cell Biochem 84:497–508

    Article  PubMed  CAS  Google Scholar 

  8. Chaudhuri O, Parekh SH, Fletcher DA (2007) Reversible stress softening of actin networks. Nature 445:295–298

    Article  PubMed  CAS  Google Scholar 

  9. Brown TD. (2000) Techniques for mechanical stimulation of cells in vitro: a review. J Biomech 33:3–14

    Article  PubMed  CAS  Google Scholar 

  10. Bottlang M, Simnacher M, Schmidt H et al (1997) A cell strain system for small homogeneous strain applications. Biomed Tech 42:305–309

    Article  CAS  Google Scholar 

  11. Neidlinger-Wilke C, Grood ES, Wang JHC et al (2001) Cell alignment is induced by cyclic changes in cell length: studies of cells grown in cyclically stretched substrates. J Orthop Res 19:286–293

    Article  PubMed  CAS  Google Scholar 

  12. Claes LE, Heigele CA, Neidlinger-Wilke C et al (1998) Effects of mechanical factors on the fracture healing process. Clin Orthop Relat Res 355(Suppl):S132–147

    Article  PubMed  Google Scholar 

  13. Sato K, Adachi T, Matsuo M et al (2005) Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells. J Biomech 38:1895–1901

    Article  PubMed  Google Scholar 

  14. Charras GT, Horton MA (2002) Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophys J 82:2970–2981

    PubMed  CAS  Google Scholar 

  15. Formigli L, Meacci E, Sassoli C et al (2007) Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts. J Cell Physiol 211:296–306

    Article  PubMed  CAS  Google Scholar 

  16. Tkach V, Tulchinsky E, Lukanidin E et al (2003) Role of the Fos family members, c-Fos, Fra-1 and Fra-2, in the regulation of cell motility. Oncogene 22:5045–5054

    Article  PubMed  CAS  Google Scholar 

  17. Huang FM, Chou MY, Chang YC (2003) Dentin bonding agents induce c-fos and c-jun protooncogenes expression in human gingival fibroblasts. Biomaterials 24:157–163

    Article  PubMed  CAS  Google Scholar 

  18. Wagner EF, Eferl R (2005) Fos/AP-1 proteins in bone and the immune system. Immunol Rev 208:126–140

    Article  PubMed  CAS  Google Scholar 

  19. Liu J, Liu T, Zheng Y et al (2006) Early responses of osteoblast-like cells to different mechanical signals through various signaling pathways. Biochem Biophys Res Commun 348:1167–1173

    Article  PubMed  CAS  Google Scholar 

  20. Li J, Zhao ZH, Chen GP et al (2007) A new four-point bending system to supply cultured adhensive cells in vitro with cyclic uniaxial strain. Key Eng Mat 330–332:1133–1136

    Article  Google Scholar 

  21. Owan I, Burr DB, Turner CH et al (1997) Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain. Am J Physiol-Cell Physiol 42:C810–C815

    Google Scholar 

  22. Knippenberg M, Helder MN, Doulabi BZ et al (2005) Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. Tissue Eng 11:1780–1788

    Article  PubMed  CAS  Google Scholar 

  23. Reuner KH, Wiederhold M, Schlegel K et al (1995) Autoregulation of actin synthesis by physiological alterations of the G-actin level in hepatocytes. Eur J Clin Chem Clin Biochem 33:569–574

    PubMed  CAS  Google Scholar 

  24. Geng WD, Boskovic G, Fultz ME, et al (2001) Regulation of expression and activity of four PKC isozymes in confluent and mechanically stimulated UMR-108 osteoblastic cells. J Cell Physiol 189:216–228

    Article  PubMed  CAS  Google Scholar 

  25. Kamioka H, Honjo T, Takano-Yamamoto T (2001) A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 28:145–149

    Article  PubMed  CAS  Google Scholar 

  26. Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367:1–16

    Article  PubMed  CAS  Google Scholar 

  27. Ignatius A, Blessing H, Liedert A et al (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26:311–318

    Article  PubMed  CAS  Google Scholar 

  28. Stanford CM, Stevens JW, Brand RA (1995) Cellular deformation reversibly depresses RT-PCR detectable levels of bone-related mRNA. J Biomech 28:1419–1427

    Article  PubMed  CAS  Google Scholar 

  29. Neidlinger-Wilke C, Wilke HJ, Claes L (1994) Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. J Orthop Res 12:70–78

    Article  PubMed  CAS  Google Scholar 

  30. Kaspar D, Seidl W, Neidlinger-Wilke C et al (2002) Proliferation of human-derived osteoblast-like cells depends on the cycle number and frequency of uniaxial strain. J Biomech 35:873–880

    Article  PubMed  Google Scholar 

  31. Horikawa A, Okada K, Sato K et al (2000) Morphological changes in osteoblastic cells (MC3T3-E1) due to fluid shear stress: cellular damage by prolonged application of fluid shear stress. Tohoku J Exp Med 191:127–137

    Article  PubMed  CAS  Google Scholar 

  32. Bur DB, Milgrom C, Fyhrie D et al (1996) In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410

    Article  Google Scholar 

  33. Jiang CJ, Weeds AG, Khan S et al (1997) F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF). Proc Natl Acad Sci USA 94:9973–9978

    Article  PubMed  CAS  Google Scholar 

  34. Machesky LM, Insall RH (1999) Signaling to actin dynamics. J Cell Biol 146:267–272

    Article  PubMed  CAS  Google Scholar 

  35. James MF, Manchanda N, Gonzalez-Agosti C et al (2001) The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem J 356:377–386

    Article  PubMed  CAS  Google Scholar 

  36. Manfred S (1982) Action of cytochalasin D on cytoskeletal networks. J Cell Biol 92:79–91

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Nature Science Foundation of China (39800145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihe Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Chen, G., Zheng, L. et al. Osteoblast cytoskeletal modulation in response to compressive stress at physiological levels. Mol Cell Biochem 304, 45–52 (2007). https://doi.org/10.1007/s11010-007-9484-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-007-9484-8

Keywords

Navigation