Skip to main content
Log in

Genetic analysis and gene mapping of the orange flower trait in Chinese cabbage (Brassica rapa L.)

  • Published:
Molecular Breeding Aims and scope Submit manuscript

A Correction to this article was published on 15 July 2019

This article has been updated

Abstract

Flower color is considered an important appealing signal to pollinators and also a marker trait in Brassica crop breeding. However, the genetic basis of orange flower trait remains poorly understood in Brassica rapa. In this study, we conducted a genetic analysis of orange flower trait and fine mapped the underlying gene in B. rapa. Two populations, BC1F1 and BC1F2 with 478 and 443 individuals, respectively, were constructed from a cross between 94C9 (orange flower) and 92S105 (yellow flower). Genetic analysis showed that a single recessive gene, BrOF, controlled the orange flower trait. Using Indel and dCAPS markers developed from whole-genome resequencing data of 94C9 and 92S105, BrOF was mapped to a 41.5-kb region on chromosome A09 delimited by InDel409 and dCAPS425 containing six putative genes. Among them, only Bra037124 and Bra037125, which encode an AP2 domain–containing transcription factor and an SEC-C motif–containing protein/OTU-like cysteine protease family protein, respectively, were successfully cloned. The sequence analysis revealed two SNPs resulting in amino acid residue changes in the coding region of Bra037124, as well as seven SNPs and one insertion leading to amino acid residue mutations in the coding region of Bra037125, between 94C9 and 92S105. The reliability of a co-segregating marker InDel314 in marker-assisted selection (MAS) was confirmed by testing different yellow/orange flower Chinese cabbage lines. These results provide a good foundation to identify BrOF and facilitate our understanding of the genetic basis underlying the development of orange flowers in Chinese cabbage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 15 July 2019

    The original article unfortunately contains an incorrect supplementary materials.

References

  • Alam Z, Aziz M (1954) Inheritance of flower colour in some self-fertile oleiferous Brassicae. Pak J Sci Res 6:27–36

    Google Scholar 

  • Amalraj A, Luang S, Kumar MY, Sornaraj P, Eini O, Kovalchuk N, Bazanova N, Li Y, Yang NN, Eliby S, Langridge P, Hrmova M, Lopato S (2016) Change of function of the wheat stress-responsive transcriptional repressor TaRAP2.1L by repressor motif modification. Plant Biotechnol J 14:820–832

    Article  CAS  Google Scholar 

  • Ariizumi T, Kishimoto S, Kakami R, Maoka T, Hirakawa H, Suzuki Y, Ozeki Y, Shirasawa K, Bernillon S, Okabe Y, Moing A, Asamizu E, Rothan C, Ohmiya A, Ezura H (2014) Identification of the carotenoid modifying gene PALE YELLOW PETAL 1 as an essential factor in xanthophyll esterification and yellow flower pigmentation in tomato (Solanum lycopersicum). Plant J 79:453–465

    Article  CAS  Google Scholar 

  • Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041

    Article  CAS  Google Scholar 

  • Beisson F, Gardies AM, Teissere M, Ferte N, Noat G (1997) Anesterase neosynthesized in post-germinated sunflower seeds is related to a new family of lipolytic enzymes. Plant Physiol Biochem 35:761–765

    CAS  Google Scholar 

  • Bergonci T, Ribeiro B, Ceciliato PH, Guerrero-Abad JC, SilvaFilho MC, Moura DS (2014) Arabidopsis thaliana RALF1 opposes brassinosteroid effects on root cell elongation and lateral root formation. J Exp Bot 65:2219–2230

    Article  CAS  Google Scholar 

  • Borovsky Y, Tadmor Y, Bar E, Meir A, Lewinsohn E, Paran I (2013) Induced mutation in β-CAROTENE HYDROXYLASE results in accumulation of β-carotene and conversion of red to orange color in pepper fruit. Theor Appl Genet 126:557–565

    Article  CAS  Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander HP (2004) Carotenoids handbook. Birkhauser Verlag, Basel

    Book  Google Scholar 

  • Cours BJ (1977) Genetic studies in Brassica campestris L. (M Sc thesis). Dissertation, University of Wisconsin

  • D’Auria JC (2006) Acyltransferases in plants: a good time to be BAHD. Curr Opin Plant Biol 9:331–340

    Article  Google Scholar 

  • DellaPenna D, Pogson BJ (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  Google Scholar 

  • Dong CJ, Liu JY (2010) The Arabidopsis EAR-motif-containing protein RAP2.1 functions as an active transcriptional repressor to keep stress responses under tight control. BMC Plant Biol 10:47–61

    Article  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    Article  CAS  Google Scholar 

  • Feng H, Li YF, Liu ZY, Liu J (2012) Mapping of or, a gene conferring orange color on the inner leaf of the Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 29:235–244

    Article  Google Scholar 

  • Galpaz N, Ronen G, Khalfa Z, Zamir D, Hirschberg J (2006) A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. Plant Cell 18:1947–1960

    Article  CAS  Google Scholar 

  • Galpaz N, Wang Q, Menda N, Zamir D, Hirschberg J (2008) Abscisic acid deficiency in the tomato mutant high-pigment 3 leading to increased plastid number and higher fruit lycopene content. Plant J 53:717–730

    Article  CAS  Google Scholar 

  • Gremski K, Ditta G, Yanofsky MF (2007) The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 134:3593–3601

    Article  CAS  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  Google Scholar 

  • Haake V, Cook D, Riechmann JL, Pineda O, Thomashow MF, Zhang JZ (2002) Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 130:639–648

    Article  CAS  Google Scholar 

  • Han FQ, Yang C, Fang ZY, Yang LM, Zhuang M, Lv HH, Liu YM, Li ZS, Liu B, Yu HL, Liu XP, Zhang YY (2015) Inheritance and InDel markers closely linked to petal color gene (cpc-1) in Brassica oleracea. Mol Breed 35:160–167

    Article  Google Scholar 

  • Hong JK, Choi HW, Hwang IS, Kim DS, Kim NH, Choi DS, Kim YJ, Hwang BK (2008) Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance. Planta 227:539–558

    Article  CAS  Google Scholar 

  • Jofuku KD, Denboer BG, Vanmontagu M, Okamuro JK (1994) Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kevan PG, Baker HG (1983) Insects as flower visitors and pollinators. Annu Rev Entomol 28:407–453

    Article  Google Scholar 

  • Kianian SF, Quiros CF (1992) Trait inheritance, fertility, and genomic relationships of some n=9 Brassica species. Genet Resour Crop Evol 39:165–175

    Google Scholar 

  • Kim KJ, Lim JH, Kim MJ, Kim T, Chung HM, Paek KH (2008) GDSL-lipase1 (CaGL1) contributes to wound stress resistance by modulation of CaPR-4 expression in hot pepper. Biochem Biophys Res Commun 374:693–698

    Article  CAS  Google Scholar 

  • Lee JM, Joung JG, McQuinn R, Chung MY, Fei Z, Tieman D, Klee H, Giovannoni J (2012) Combined transcriptome, genetic diversity and metabolite profiling in tomato fruit reveals that the ethylene response factor SlERF6 plays an important role in ripening and carotenoid accumulation. Plant J 70:191–204

    Article  CAS  Google Scholar 

  • Lee S, Lee SC, Byun DH, Lee DY, Park JY, Lee JH, Lee HO, Sung SH, Yang TJ (2014) Association of molecular markers derived from the BrCRISTO1 gene with prolycopene-enriched orange-colored leaves in Brassica rapa. Theor Appl Genet 127:179–191

    Article  CAS  Google Scholar 

  • Li M, Chen WJ, Yi DL (1999) Studies on the inheritance of CMS restorer R18 with red color flower in rapeseed (Brassica napus L). Sci Agric Sin 32:27–30

    Google Scholar 

  • Li L, Paolillo DJ, Parthasarathy MV, Dimuzio EM, Garvin DF (2001) A novel gene mutation that confers abnormal patterns of β-carotene accumulation in cauliflower (Brassica oleracea var. botrytis). Plant J 26:59–67

    Article  CAS  Google Scholar 

  • Li PR, Zhang SJ, Zhang SF, Li F, Zhang H, Liu XY, Wu J, Wang XW, Sun RF (2015) Carotenoid identification and molecular analysis of carotenoid isomerase-encoding BrCRTISO, the candidate gene for inner leaf orange coloration in Chinese cabbage. Mol Breed 35:72–83

    Article  Google Scholar 

  • Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) AP2/ERF family transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:86–96

    Article  CAS  Google Scholar 

  • Mohammad A, Sikka SM, Aziz MA (1942) Inheritance of seed colour in some oleiferous Brassicae. Indian J Genet Plant Breeding 2:112–127

    Google Scholar 

  • Murphy E, Vu DL, Vandenbroeck L, Lin Z, Ramakrishna P, Vandecotte B, Gaudinier A, Goh T, Slane D, Beeckman T, Inzé D, Brady SM, Fukaki H, De Smet I (2016) RALFL34 regulates formative cell divisions in Arabidopsis pericycle during lateral root initiation. J Exp Bot 67:4863–4875

    Article  CAS  Google Scholar 

  • Niyogi K (2000) Safety valves for photosynthesis. Curr Opin Plant Biol 3:455–460

    Article  CAS  Google Scholar 

  • Ohmiya A, Toyoda T, Watanabe H, Emoto K, Hase Y, Yoshioka S (2012) Mechanism behind petal color mutation induced by heavy-ion-beam irradiation of recalcitrant chrysanthemum cultivar. J Jpn Soc Hort Sci 81:269–274

    Article  CAS  Google Scholar 

  • Pan YP, Bo KL, Cheng ZH, Weng YQ (2015) The loss-of-function GLABROUS 3 mutation in cucumber is due to LTR-retrotransposon insertion in a class IV HD-ZIP transcription factor gene CsGL3 that is epistatic over CsGL1. BMC Plant Biol 15:302–316

    Article  Google Scholar 

  • Paolillo DJ, Garvin DF, Parthasarathy MV (2004) The chromoplasts of Or mutants of cauliflower (Brassica oleracea L. var. botrytis). Protoplasma 224:245–253

    Article  Google Scholar 

  • Porebski S, Bailey LG, Baum BR (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Report 15:8–15

    Article  CAS  Google Scholar 

  • Quazi MH (1988) Interspecific hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theor Appl Genet 75:309–318

    Article  Google Scholar 

  • Ruiz-Sola MA, Rodrıguez-Concepcion M (2012) Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book 10:e015

    Article  Google Scholar 

  • Schuster C, Gaillochet C, Lohmann JU (2015) Arabidopsis HECATE genes function in phytohormone control during gynoecium development. Development 142:3343–3350

    Article  CAS  Google Scholar 

  • Singh KH, Chauhan JS (2011) Genetics of flower colour in Indian mustard (Brassica juncea L. Czern & Coss). Indian J Genet 71:377–378

    Google Scholar 

  • Su TB, Yu SC, Wang J, Zhang FL, Yu YJ, Zhang DS, Zhao XY, Wang WH (2015) Loss of function of the carotenoid isomerase gene BrCRTISO confers orange color to the inner leaves of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Mol Biol Report 33:648–659

    Article  CAS  Google Scholar 

  • Tsutsui T, Kato W, Asada Y, Sako K, Sato T, Sonoda Y, Kidokoro S, Yamaguchi-Shinozaki K, Tamaoki M, Arakawa K, Ichikawa T, Nakazawa M, Seki M, Shinozaki K, Matsui M, Ikeda A, Yamaguchi J (2009) DEAR1, a transcriptional repressor of DREB protein that mediates plant defense and freezing stress responses in Arabidopsis. J Plant Res 122:633–643

    Article  CAS  Google Scholar 

  • Walter MH, Strack D (2011) Carotenoids and their cleavage products: biosynthesis and functions. Nat Prod Rep 28:663–692

    Article  CAS  Google Scholar 

  • Wang XW, Wang HZ, Wang J et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  Google Scholar 

  • Yoshioka S, Aida R, Yamamizo C, Shibata M, Ohmiya A (2012) The carotenoid cleavage dioxygenase 4 (CmCCD4a) gene family encodes a key regulator of petal color mutation in chrysanthemum. Euphytica 184:377–387

    Article  CAS  Google Scholar 

  • Zhang B (2015) Development of chromosome segment substitution lines for QTL analysis of important agronomic traits and cloning the white-flowered gene in Brassica napus L. Dissertation, Huazhong Agricultural University

  • Zhang XX, Li RH, Chen L, Niu SL, Li Q, Xu K, Wen J, Yi B, Ma CZ, Tu JX, Fu TD, Shen JX (2018) Inheritance and gene mapping of the white flower trait in Brassica juncea. Mol Breed 38:20–29

    Article  Google Scholar 

  • Zhang JX, Li HX, Zhang MK, Hui MX, Wang Q, Li L, Zhang LG (2013) Fine mapping and identification of candidate Br-or gene controlling orange head of Chinese cabbage (Brassica rapa L. ssp. pekinensis). Mol Breed 32:799–805

    Article  CAS  Google Scholar 

  • Zhang B, Liu C, Wang YQ, Yao X, Wang F, Wu JS, King GJ, Liu KD (2015a) Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytol 206:1513–1526

    Article  CAS  Google Scholar 

  • Zhang JF, Pu HM, Qi CK, Fu SZ (2000) Inheritance of flower color character in oilseed rape (Brassica napus L). Chin J Oil Crop Sci 22:1–4

    Google Scholar 

  • Zheng ZY, Qualley A, Fan BF, Dudareva N, Chen ZX (2009) An important role of a BAHD acyl transferase-like protein in plant innate immunity. Plant J 57:1040–1053

    Article  CAS  Google Scholar 

  • Zhang JX, Yuan H, Fei ZJ, Pogson BJ, Zhang LG, Li L (2015b) Molecular characterization and transcriptome analysis of orange head Chinese cabbage (Brassica rapa L. ssp. pekinensis). Planta 241:1381–1394

    Article  CAS  Google Scholar 

  • Zhang DS, Zhang FL, Xu JB (2003) Hereditary characteristics of heading and flower colors on Chinese cabbage. Acta Agric Boreali Sin 18:81–84

    Google Scholar 

Download references

Author contribution statement

L. Z. and N. Z. conceived and designed the experiments. N. Z. performed molecular marker development, the genetic map construction, and cloning of the genes contained in the mapped region, and wrote the paper. H. Z., Y. R., and L. C. performed phenotypic observation and DNA extraction, and J. Z. verified the accuracy of the co-segregating markers. L. Z. provided the B. rapa materials, revised the paper, and supervised the research.

Funding

This work was supported by the National Key Research and Development Program of China (2017YFD0101802) and the National Science and Technology Support Program of China (2014BAD01B0802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lugang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 56 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Zhang, H., Ren, Y. et al. Genetic analysis and gene mapping of the orange flower trait in Chinese cabbage (Brassica rapa L.). Mol Breeding 39, 76 (2019). https://doi.org/10.1007/s11032-019-0984-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-019-0984-5

Keywords

Navigation