Skip to main content
Log in

Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Nine important fruit quality traits—including fruit weight, stone weight, fruit diameter, skin ground colour, flesh colour, blush colour, firmness, soluble solids content and acidity content—were studied for two consecutive years in two F1 apricot progeny derived from the crosses ‘Bergeron’ × ‘Currot’ (B×C) and ‘Goldrich’ × ‘Currot’ (G×C). Results showed great segregation variability between populations, which was expected because of the polygenic nature and quantitative inheritance of all the studied traits. In addition, some correlations were observed among the fruit quality traits studied. QTL (quantitative trait loci) analysis was carried out using the phenotypic data and genetic linkages maps of ‘B×C’ and ‘G×C’ obtained with SSR and SNP markers. The most significant QTLs were localised in LG4 for soluble solids content and in LG3 for skin and flesh colour. In LG4, we can highlight the presence of candidate genes involved in D-glucose and D-mannose binding, while in LG3, we identified MYB genes previously linked to skin colour by other authors. In order to clearly identify the candidate genes responsible for the analysed traits, we converted the QTLs into expression QTLs and analysed the abundance of transcripts in the segregating genotypes ‘GC 2–11’ and ‘GC 3–7’ from the G×C population. Using qPCR, we analysed the gene expression of nine candidate genes associated with the QTLs identified, including transcription factors (MYB 10), carotenoid biosynthesis genes (LOX 2, CCD1 and CCD4), anthocyanin biosynthesis genes (ANS, UFGT and F3’5’H), organic acid biosynthesis genes (NAD ME) and ripening date genes (NAC). Results showed variable expression patterns throughout fruit development and between contrasted genotypes, with a correlation between validated genes and linked QTLs. The MYB10 gene was the best candidate gene for skin colour. In addition, we found that monitoring NAC expression is a good RNA marker for evaluating ripening progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hort 465:41–49

    CAS  Google Scholar 

  • Adami M. De Franceschi P, Brandi F, Liverani A, Giovannini A, Rosati C, Dondini L, Tartarini S (2013) Identifying a carotenoid cleavage dioxygenase (ccd4) gene controlling yellow/white fruit flesh color of peach. Plant Mol Biol Reporter 31 (5):1166–1175

  • Ayour J, Sagar M, Alfeddy MN, Taourirte M, Benichou M (2016) Evolution of pigments and their relationship with skin color based on ripening in fruits of different Moroccan genotypes of apricots (Prunus armeniaca L.). Scientia Hort 207:168–175

    CAS  Google Scholar 

  • Balogh E, Halász J, Szani Z, Hegedus A (2018) Correspondence between maturity date and molecular variations in a NAC transcription factor of diploid and polyploid Prunus species. Turkish J Agric Forest 42:136–144

    Google Scholar 

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    CAS  PubMed  Google Scholar 

  • Bazzano LA, He J, Ogden LG, Loria CM, Vupputuri S, Myers L, Whelton PK (2002) Fruit and vegetable intake and risk of cardiovascular disease in US adults the first national health and nutrition examination survey epidemiologic follow-up study. Am J Clin Nutr 76:93–99

    CAS  PubMed  Google Scholar 

  • Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520–529

    CAS  PubMed  Google Scholar 

  • Brandi F, Bar E, Mourgues F, Horváth G, Turcsi E, Giuliano G, Rosati C (2011) Study of “Redhaven” peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism. BMC Plant Biol 11(1):24

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GS, Walker TD (1990) Indicators of maturity in apricots using biplot multivariate analysis. J Sci Food Agri 53:321–331

    Google Scholar 

  • Bureau S, Catherine M, Renard GC, Reich M, Ginies C, Audergon JM (2009) Change in anthocyanin concentrations in red apricot fruits during ripening. Food Sci Technol 42(1):372–377

    CAS  Google Scholar 

  • Campbell OE, Merwin IA, Padilla-Zakour OI (2013) Characterization and the effect of maturity at harvest on the phenolic and carotenoid content of Northeast USA apricot (Prunus armeniaca) varieties. J Agric Food Chem 61(51):12700–12710

    CAS  PubMed  Google Scholar 

  • Campoy JA, Martínez-Gómez P, Ruiz D, Rees J, Celton JM (2010) Developing microsatellite multiplex and megaplex PCR systems for high throughput characterization of breeding progenies and linkage maps spanning the apricot genome. Plant Mol Biol Report 28:560–568

    CAS  Google Scholar 

  • Campoy JA, Le Dantec L, Barreneche T, Dirlewanger E, Quero-García J (2015) New insights into fruit firmness and weight control in sweet cherry. Plant Mol Biol Report 33:783–796

    CAS  Google Scholar 

  • Cantín CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gorgocena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch]. Postharvest Biol Technol 58:79–87

    Google Scholar 

  • Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellen RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Gen 8:212

    Google Scholar 

  • Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, Szcześniak MW, Gaffney DJ, Elo LL, Zhang X, Mortazavi A (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13

    PubMed  PubMed Central  Google Scholar 

  • Dare AP, Schaffer RJ, Lin-Wang K, Allan AC, Hellens RP (2008) Identification of a cis-regulatory element by transient analysis of co-ordinately regulated genes. Plant Meth 4:17

    Google Scholar 

  • De Franceschi P, Stegmeir T, Cabrera A, van der Knaap E, Rosyara UR, Sebolt AM, Dondini L, Dirlewanger E, Quero-García J, Campoy JA, Iezzoni AF (2013) Cell number regulator genes in Prunus provide candidate genes for the control of fruit size in sweet and sour cherry. Mol Breed 32:311–326

    PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arùs P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109(5):280–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTLs controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18–31

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Druka A, Potokina E, Luo Z, Jiang N, Chen X, Kearsy M, Waugh R (2010) Expression quantitative trait loci analysis in plants. Plant Biotech J 8:10–27

    CAS  Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2010) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Gen 7(2):323–335

    Google Scholar 

  • Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Gen 7:323–335

    Google Scholar 

  • Eduardo I, Chietera G, Pirona R, Pacheco I, Troggio M, Banchi E, Bassi D, Rossini L, Vecchietti A, Pozzi C (2012) Genetic dissection of aroma volatile compounds from the essential oil of peach fruit: QTL analysis and identification of candidate genes using dense SNP maps. Tree Genet Gen 9(1):189–204

    Google Scholar 

  • Espley RV, Hellens RP, Puterill J, Kutty-Amma S, Allan AC (2007) Red colouration in apple fruit is due to the activity of a MYB transcription factor, MdMYB10. Plant J 49:414–427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Etienne C, Rothan C, Moing A, Plomion C, Bodnes C, Svanella-Dumas L, Cosson P, Pronier V, Monet R, Dirlewanger E (2002a) Candidate gene and QTLs for sugar and organic acid content in peach. Theor Appl Genet 105:145–159

    CAS  PubMed  Google Scholar 

  • Etienne C, Moing A, Dirlewanger E, Raymond P, Monet R, Rothan C (2002b) Isolation and characterization of six peach cDNAs encoding key proteins in organic acid metabolism and solute accumulation: involvement in regulating peach fruit acidity. Physiol Plantarum 114(2):259–270

    CAS  Google Scholar 

  • Fresnedo-Ramírez J, Bink MC, van de Weg E, Famula TR, Crisosto CH, Frett TJ, Gradziel TM (2015) QTL mapping of pomological traits in peach and related species breeding germplasm. Mol Breed 35:1–19

    Google Scholar 

  • Fresnedo-Ramírez J, Frett TJ, Sandefur PJ, Salgado-Rojas A, Clark JR, Gasic K, Peace CP, Anderson N, Hartmann TP, Byrne DH, Bink MCAM, van de Weg E, Crisosto CH, Gradziel TM (2016) QTL mapping and breeding value estimation through pedigree-based analysis of fruit size and weight in four diverse peach breeding programs. Tree Genet Gen 12:25

    Google Scholar 

  • Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Gen 10:367–381

    Google Scholar 

  • Gomez E, Ledbetter CA (1997) Development of volatile compounds during fruit maturation: characterization of apricot and plum x apricot hybrids. J Sci Food Agri 74(4):541–546

    CAS  Google Scholar 

  • Gonzalez M, Salazar E, Cabrera S, Olea P, Carrasco B (2016) Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development. Gene Expr Patterns 21(1):54–62

    CAS  PubMed  Google Scholar 

  • Guo S, Song Z, Ma R, Yang Y, Yu M (2017) Genome-wide identification and expression analysis of the lipoxygenase gene family during peach fruit ripening under different postharvest treatments. Acta Physiol Plantarum 39(5):111

    Google Scholar 

  • Gouble B, Bureau S, Grotte M, Reich M, Reling P, Audergon JM (2005) Apricot postharvest ability in relation to ethylene production: influence of picking time and cultivar. In Proceedings of the 5th International Postharvest Symposium, Vols 1-3, edited by F. Mencarelli and P. Tonutti, 127-133. Leuven 1: International Society Horticultural Science

  • Hertog MGL, Hollman PCH, Katan MB, Kromhout D (1993) Estimation of daily intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr Cancer 20:21–29

    CAS  PubMed  Google Scholar 

  • Hollander, M., Wolfe, D. A., & Chicken, E. (2013).Nonparametric statistical methods(Vol. 751). John Wiley & Sons

  • Huang YF, Vialet S, Guiraud JL, Torregrosa L, Bertrand Y, Cheynier V, This P, Terrier N (2014) A negative MYB regulator of proanthocyanidin accumulation, identified through expression quantitative locus mapping in the grape berry. New Phytol 201(3):795–809

    CAS  PubMed  Google Scholar 

  • Illa I, Eduardo I, Audergon JM, Barale F, Dirlewanger E, Li X, Moing A, Lambert P, Le Dantec L, Gao Z, Poëssel JL, Pozzi C, Rossini L, Vecchietti A, Arús P, Howad W (2011) Saturating the Prunus (stone fruits) genome with candidate genes for fruit quality. Mol Breed 28:667–682

    Google Scholar 

  • Infante R, Martínez-Gómez P, Predieri S (2008) Quality oriented fruit breeding: peach [Prunus persica (L.) Batsch]. J Food Agri Environ 6:342–356

    CAS  Google Scholar 

  • Infante R, Martínez-Gómez P, Predieri S (2011) Breeding for fruit quality in Prunus. In: Jenks MA, Bebeli PJ (eds) Breeding for fruit quality. Ed. Wiley and Blackwel, New York (USA), pp 201–229

    Google Scholar 

  • Jo Y, Lian S, Cho JK, Choi H, Chu H, Cho WK (2015) De novo transcriptome assembly of two different apricot cultivars. Gen Data 6:275–276

    Google Scholar 

  • Lang L, Xu A, Ding J, Zhang Y, Zhao N, Tian ZS, Liu YP, Wang Y, Liu X, Liang FH (2017) Quantitative trait locus mapping of salt tolerance and identification of salt-tolerant genes in Brassica napus L. Front Plant Sci 8:100

    Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079

    PubMed  PubMed Central  Google Scholar 

  • Machlin LJ (1995) Critical assessment of the epidemiological data concerning the impact of antioxidant nutrients on cancer and cardiovascular disease. Crit Rev Food Sci Nutr 35:41–50

    CAS  PubMed  Google Scholar 

  • Martínez-García PJ, Fresnedo-Ramírez J, Parfitt DE, Gradziel TM, Crisosto CH (2013) Effect prediction of identified SNPs linked to fruit quality and chilling injury in peach [Prunus persica (L.) Batsch]. Plant Mol Biol 81:175–188

    Google Scholar 

  • Marty I, Bureau S, Sarkissian G, Gouble B, Audergon JM, Albagnac G (2005) Ethylene regulation of carotenoid accumulation and carotenogenic gene expression in colour-contrasted apricot varieties (Prunus armeniaca). J Exp Botany 56(417):1877–1886

    CAS  Google Scholar 

  • Milne I, Stephen G, Bayer M, Cock PJ, Pritchard L et al (2013) Using tablet for visual exploration of second-generation sequencing data. Brief Bioinf 14:193–202

    CAS  Google Scholar 

  • Niu J, Zhu B, Cai J, Li P, Wang L, Dai H, Qiu L, Yu H, Ha D, Zhao H, Zhang H, Lin S (2014) Selection of reference genes for gene expression studies in Siberian apricot (Prunus sibirica L.) germplasm using quantitative real-time PCR. PLoS One 9(8):e103900

    PubMed  PubMed Central  Google Scholar 

  • Ogundiwin EA, Peace CP, Gradziel TM, Parfitt DE, Bliss FA, Crisosto CH (2009) A fruit quality gene map of Prunus. BMC Gen 10:587

    Google Scholar 

  • Pierantoni L, Dondini L, De Franceschi P, Musacchi S, Winkel-Shirley BJ, Sansavini S (2010) Mapping of an anthocyanin-regulating MYB transcription factor and its expression in red and green pear, Pyrus communis. Plant Physiol Bioch 48:1020–1026

    CAS  Google Scholar 

  • Pirona R, Eduardo I, Pacheco I, Linge CD, Miculan M, Verde I, Tartarini S, Dondini L, Pea G, Bassi D, Rossini L (2013) Fine mapping and identification of a candidate gene for a major locus controlling maturity date in peach. BMC Plant Biol 13:166

    PubMed  PubMed Central  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hort 521:233–241

    CAS  Google Scholar 

  • Quilot B, Wu BH, Kervella J, Génard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884–897

    CAS  PubMed  Google Scholar 

  • Ravaglia D, Espley RV, Henry-Kirk RA, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC (2013) Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol 13(1):68

    CAS  PubMed  PubMed Central  Google Scholar 

  • RStudio Team (2015). RStudio: integrated development for R. RStudio, Inc., Boston, MA URL http://www.rstudio.com/

  • Ruiz D, Egea J (2008) Phenotypic diversity and relationships of fruit quality traits in apricot (Prunus armeniaca L.) germplasm. Euphytica 163:143–158

    CAS  Google Scholar 

  • Ruiz D, Egea J, Gil MI, Tomás-Barberan FA (2005a) Characterization and quantitation of phenolic compounds in new apricot (Prunus armeniaca L.) varieties. J Agric Food Chem 53:9544–9552

    CAS  PubMed  Google Scholar 

  • Ruiz D, Egea J, Tomás-Barberán FA, Gil MI (2005b) Carotenoids from new apricot (Prunus armeniaca L.) varieties and their relationship with flesh and skin color. J Agric Food Chem 53:6368–6374

    CAS  PubMed  Google Scholar 

  • Ruiz D, Reich M, Bureau S, Renard C, Audergon JM (2008) Application of reflectance colorimeter measurements and infrared spectroscopy methods to rapid and nondestructive evaluation of carotenoids content in apricot (Prunus armeniaca L.). J Agric Food Chem 56(13):4916–4922

    CAS  PubMed  Google Scholar 

  • Ruiz D, Lambert P, Audergon JM, Dondini L, Tartarini S, Adami M, Gennari F, Cervellati C, De Franceschi P, Sansavini S, Bureau S, Gouble B, Reich M, Renard CMGC, Bassi D, Testolin R (2010) Identification of QTLs for fruit quality traits in apricot. Acta Hort 862:587–592

    CAS  Google Scholar 

  • Salazar JA, Ruiz D, Egea J, Martínez-Gómez P (2013) Transmission of fruit quality traits in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat (SSR) markers. Plant Mol Biol Report 31:1506–1517

    CAS  Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Sánchez-Pérez R, Crisosto CH, Martínez-García PJ, Blenda A, Jung S, Main D, Martínez-Gómez P, Rubio M (2014) Quantitative trait loci (QTL) and Mendelian trait loci (MTL) analysis in Prunus: a breeding perspective and beyond. Plant Mol Biol Report 32:1–18

    Google Scholar 

  • Salazar JA, Rubio M, Ruiz D, Tartarini S, Martínez-Gómez P, Dondini L (2015) SNP development for genetic diversity analysis in apricot. Tree Genet Gen 11:15

    Google Scholar 

  • Salazar JA, Ruiz D, Campoy JA, Tartarini S, Dondini L, Martínez-Gómez P (2016) Inheritance of reproductive phenology traits and related QTL identification in apricot. Tree Genet Gen 12(4):71

    Google Scholar 

  • Salazar JA, Pacheco I, Shinya P, Zapata P, Silva C, Ruiz D, Martínez-Gómez P, Infante R (2017) Genotyping by sequencing for SNP-based linkage analysis and identification of QTLs linked to fruit quality traits in Japanese plum (Prunus salicina Lindl.). Front Plant Sci 8:476

    PubMed  PubMed Central  Google Scholar 

  • Simpson CG, Cullen DW, Hackett CA, Smith K, Hallett PD, McNicol J, Woodhead M, Graham J (2017) Mapping and expression of genes associated with raspberry fruit ripening and softening. Theor Appl Genet 130:557–572

    CAS  PubMed  Google Scholar 

  • Sims ET, Comin D (1963) Evaluation of objective maturity indices for Halehaven peaches. Proc Am Soc Hortic Sci 82:125–130

    CAS  Google Scholar 

  • Socquest-Juglard D, Christen D, Devènes G, Gessler C, Duffy B, Patocchi A (2012) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Report 31:387–397

    Google Scholar 

  • Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Wang KL, Allan AC, Gardiner SE, Chagné H, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Gen 6:821–832

    Google Scholar 

  • Souty M, Audergon JM, Chambroy Y (1990) Abricot: les critères de qualite´. L’Arboriculture fruitière 430:16–24

    Google Scholar 

  • Sugiyama A, Omura M, Shimoda T, Fuji H, Endo T, Shimizu T, Nesumi H, Nonaka K, Ikoma Y (2014) Expression quantitative trait loci analysis of carotenoid metabolism-related genes in Citrus. J Japan Soc Hort Sci 83:32–43

    CAS  Google Scholar 

  • Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142:1216–1232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54(4):733–749

    CAS  PubMed  Google Scholar 

  • Telias A, Kui LW, Stevenson DE, Cooney JM, Hellens RP, Allan AC, Hoover EE, Bradeen JM (2011) Apple skin patterning is associated with differential expression of MYB10. BMC Plant Biol 11:14

    Google Scholar 

  • Van den Berg H, Faulks R, Fernando Granado H, Hirschberg J, Olmedilla B, Sandmann G, Southon S, Stahl W (2000) The potential for the improvement of carotenoid levels in foods and the likely systemic effects. J Sci Food Agric 80:880–912

    Google Scholar 

  • Van Ooijen JW (2006) JoinMap 4, software for the calculation of genetic linkage maps in experimental populations. Wageningen, Kyazma

    Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes." Gen Biol 3 (7): RESEARCH0034

  • Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hort 592:291–297

    CAS  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F et al (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494

    CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    CAS  PubMed  Google Scholar 

  • Wang D, Karle R, Iezzoni AF (2000) QTL analysis of flower and fruit traits in sour cherry. Theor Appl Genet 100:535–544

    CAS  Google Scholar 

  • Wang Z, Meng D, Wang A, Li T, Jiang S, Cong P, Li T (2013) The methylation of the PcMYB10 promoter is associated with green-skinned sport in Max Red Bartlett pear. Plant Physiol 162(2):885–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi W, Zheng H, Zhang Q, Li W (2016) Profiling taste and aroma compound metabolism during apricot fruit development and ripening. Int J Mol Sci 17:998

    PubMed Central  Google Scholar 

  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) miRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80(1):75–84

    CAS  Google Scholar 

  • Ye J, Liu P, Zhu C, Qu J, Wang X, Sun Y, Sun F, Jiang Y, Yue G, Wang C (2014) Identification of candidate genes JcARF19 and JcIAA9 associated with seed size traits in Jatropha. Funct Integr Genomics 14(4):757–766

    CAS  PubMed  Google Scholar 

  • Zhang B, Shen JY, Wei WW, Xi WP, Xu CJ, Ferguson I, Chen KS (2010) Expression of genes associated with aroma formation derived from the fatty acid pathway during peach fruit ripening. J Agri Food Chem 58(10):6157–6165

    CAS  Google Scholar 

  • Zhou Y, Guo D, Li J, Cheng J, Zhou H, Gu C, Gardiner S, Han YP (2012) Coordinated regulation of anthocyanin biosynthesis through photorespiration and temperature in peach (Prunus persica). Tree Genet Gen 9(1):265–278

    Google Scholar 

  • Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015) Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 82(1):105–121

    CAS  PubMed  Google Scholar 

Download references

Funding

This study was financially assisted by the Seneca Foundation of the Region of Murcia (Saavedra Fajardo Postdoctoral fellow 20397/SF/17) during the stay of Juan A. Salazar in Murcia. This study was also supported by the “Apricot breeding” project of the Spanish Ministry of Economy and Competiveness (AGL2013-41452-R) and the project “Breeding stone fruit species assisted by molecular tools” of the Seneca Foundation of the Region of Murcia (19879/GERM/15).

Author information

Authors and Affiliations

Authors

Contributions

LD, PM-G and D.R. participated in the design and coordination of the study. D.R. and J.A.S. performed the phenotypic evaluation. B.E.G-G and J.A.S. Salazar carried out the SSR and SNP analyses, and B.E.G-G carried out the qPCR analysis. B.E.G-G, J.A.S., LD, PM-G and D.R. participated in the manuscript elaboration and discussion.

Corresponding authors

Correspondence to Luca Dondini or Pedro Martínez-Gómez.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Figure 1

Genetic maps of F1 apricot progeny ‘Bergeron’ (B) × ‘Currot’ (C) and QTL identification by interval mapping analysis for two years of phenotyping: ripening time (RT), fruit weight (FW), stone weight (SW) and fruit diameter (CAL) are in blue; skin colour (SKC), flesh colour (FLSC) and blush colour (BLSC) are in orange; firmness (FIRM) is in violet; and malic acid (MALIC) and soluble solids (SS) are in red. The LOD threshold for QTL intervals: *α < 0.05, **α < 0.01. The assayed candidate genes are indicated with arrows in bold and italics. (PNG 2180 kb)

High Resolution Image (TIF 1211 kb)

Supplementary Figure 2

Genetic maps of F1 apricot progeny ‘Goldrich’ (G) × ‘Currot’ (C) and QTL identification by interval mapping analysis for two years of phenotyping: ripening time (RT), fruit weight (FW), stone weight (SW) and fruit diameter (CAL) are in blue; skin colour (SKC), flesh colour (FLSC) and blush colour (BLSC) are in orange; firmness (FIRM) is in violet; malic acid (MALIC) and soluble solids (SS) are in red. The LOD threshold for QTL intervals: *α < 0.05, **α < 0.01. The assayed candidate genes are indicated with arrows in bold and italics. (PNG 1504 kb)

High Resolution Image (TIF 1041 kb)

Supplementary Table 1

Description of assayed candidate genes through qPCR. (XLSX 17 kb)

ESM 4

(DOC 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Gómez, B.E., Salazar, J.A., Dondini, L. et al. Identification of QTLs linked to fruit quality traits in apricot (Prunus armeniaca L.) and biological validation through gene expression analysis using qPCR. Mol Breeding 39, 28 (2019). https://doi.org/10.1007/s11032-018-0926-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0926-7

Keywords

Navigation