Skip to main content
Log in

Identification and mapping of fruit rot resistance QTL in American cranberry using GBS

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Sustainability of the cranberry industry is threatened by widespread and increasing losses due to fruit rot in the field as well as increasing restrictions on fungicide inputs. Breeding for resistance offers a partial solution but is challenging because fruit rot is caused by a complex of pathogenic fungi that can vary by location and from year to year. We identified four genetically diverse germplasm accessions that exhibit broad-spectrum fruit rot resistance under field conditions. Three of these accessions were used in biparental crosses to develop four populations segregating for resistance. Genotyping by sequencing was used to generate single-nucleotide polymorphism (SNP) markers for development of high-density genetic maps and quantitative trait locus (QTL) analyses. Nineteen QTL associated with fruit rot resistance, distributed on nine linkage groups, were discovered in our populations. Three of these QTL matched previously reported fruit rot resistance QTL. Four newly reported QTL found on linkage group 8 (Vm8), which explain between 21 and 33% of the phenotypic variance for fruit rot, are of particular interest to our breeding program. The populations described herein were also phenotyped for other horticulturally important traits, and QTL associated with yield and berry weight were identified. These QTL provide markers for candidate gene discovery and for future breeding efforts to enhance and pyramid disease resistance and other traits into elite horticultural backgrounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Boches PS, Bassil NV, Rowland LJ (2005) Microsatellite markers for Vaccinium from EST and genomic libraries. Mol Ecol Notes 5:657–660

  • Buti M, Sargent DJ, Mhelembe KG, Delfino P, Tobutt KR, Velasco R (2016) Genotyping-by-sequencing in an orphan plant species Physocarpus opulifolius helps identify the evolutionary origins of the genus Prunus. BMC Research Notes 9:1

    Article  Google Scholar 

  • Catchen J, Amores A, Hohenlohe P, Cresko W, Postlethwait J (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3: Genes, Genomes, Genetics 1:171–182

    Article  CAS  Google Scholar 

  • Covarrubias-Pazaran G, Diaz-Garcia L, Schlautman B, Deutsch J, Salazar W, Hernandez-Ochoa M, Grygleski E, Steffan S, Iorizzo M, Polashock J, Vorsa N (2016) Exploiting genotyping by sequencing to characterize the genomic structure of the American cranberry through high-density linkage mapping. BMC Genomics 17:451

    Article  PubMed  PubMed Central  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgi L, Herai RH, Vidal R, Carazzolle MF, Pereira GG, Polashock JJ, Vorsa N (2012) Cranberry microsatellite marker development from assembled next-generation genomic sequence. Molec Breeding 30:227–237

    Article  CAS  Google Scholar 

  • Georgi L, Johnson-Cicalese J, Honig J, Das S, Rajah V, Bhattacharya D, Bassil N, Rowland LJ, Polashock JJ, Vorsa N (2013) The first genetic map of the American cranberry: exploration of synteny conservation and quantitative trait loci. Theor Appl Genet 126:673–692

    Article  CAS  PubMed  Google Scholar 

  • Girard C, Chelysheva L, Choinard S, Froger N, Macaisne N, Lehmemdi A, Mazel J, Crismani W, Mercier R (2015) AAA-ATPase FIDGETIN-LIKE 1 and helicase FANCM antagonize meiotic crossovers by distinct mechanisms. PLoS Genet 11(7):e1005369

    Article  PubMed  PubMed Central  Google Scholar 

  • Howell DC (2007) Statistical methods for psychology, 6th edn. Thomson Wadsworth, Belmont, CA

    Google Scholar 

  • Johnson-Cicalese J, Vorsa N, Polashock J, Ward D (2015) Heritability of fruit rot-resistance in American cranberry. J Amer Soc Hort Sci 140:233–242

    Google Scholar 

  • Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magnuson JJ, Robertson DM, Benson BJ, Wynne RH, Livingstone DM, Arai T, Assel RA, Barry RG, Card V, Kuusisto E, Granin NG, Prowse TD, Stewart KM, Vuglinski VS (2000) Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289:1743–1746

    Article  CAS  PubMed  Google Scholar 

  • McManus P (2006) Cranberry fruit rot players in 2005. Wisconsin Cranberry School Proceedings http://fruit.wisc.edu/wp-content/uploads/2011/05/Cranberry-Fruit-Rot-Players-in-2005.pdf.

  • McManus PS (1998) First report of early rot on cranberry caused by Phyllosticta vaccinii in Wisconsin. Plant Dis 82:350

    Article  Google Scholar 

  • Mercier R, Mézard C, Jenczewski E, Macaisne N, Grelon M (2014) The molecular biology of meiosis in plants. Annu Rev Plant Biol 66:297–327

    Article  PubMed  Google Scholar 

  • Münch S, Lingner U, Floss DS, Ludwig N, Sauer N, Deising HB (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51

    Article  PubMed  Google Scholar 

  • Ortiz R, Vorsa N (1998) Tetrad analysis with translocation heterozygotes in cranberry (Vaccinium macrocarpon Ait.): interstitial chiasma and directed segregation of centromeres. Hereditas 129:75–84

    Article  Google Scholar 

  • Ortiz R, Vorsa N (2004) Transmission of a cyclical translocation in two cranberry cultivars. Hereditas 140:81–86

    Article  CAS  PubMed  Google Scholar 

  • Oudemans P, Caruso F, Stretch A (1998) Cranberry fruit rot in the Northeast: a complex disease. Plant Dis 82:1176–1184

    Article  Google Scholar 

  • Perfect SE, Green JR (2001) Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Molec Plant Pathol 2:101–108

    Article  CAS  Google Scholar 

  • Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R (2013) Crop pollination exposes honey bees to pesticides which alters their susceptibility to the gut pathogen Nosema ceranae. PLoS One 8:e70182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pootakham W, Ruang-Areerate P, Jomchai N, Sonthirod C, Sangsrakru D, Yoocha T, Theerawattanasuk K, Nirapathpongporn K, Romruensukharom P, Tragoonrung S, Tangphatsornruang S (2015) Construction of a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis) using genotyping-by-sequencing (GBS). Front Plant Sci 6:367

    Article  PubMed  PubMed Central  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

  • Polashock J, Zelzion E, Fajardo D, Zalapa J, Georgi L, Bhattacharya D, Vorsa N (2014) The American cranberry: first insights into the whole genome of a species adapted to bog habitat. BMC Plant Biol 14:165

    Article  PubMed  PubMed Central  Google Scholar 

  • Polashock JJ, Caruso FL, Oudemans PV, McManus PS, Crouch JA (2009) The North American cranberry fruit rot fungal community: a systematic overview using morphological and phylogenetic affinities. Plant Pathol 58:1116–1127

    Article  Google Scholar 

  • R Development Team (2016) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

  • Royston JP (1995) Shapiro-Wilk normality test and P-value. Appl Stat 44:547–551

    Article  Google Scholar 

  • Royston P (1982) An extension of Shapiro and Wilk’s W test for normality to large samples. Appl Stat 31:115–124

    Article  Google Scholar 

  • Sakaguchi S, Sugino T, Tsumura Y, Ito M, Crisp MD, Bowman DMJS, Nagano AJ, Honjo MN, Yasugi M, Kudoh H, Matsuki Y, Suyama Y, Isagi Y (2015) High-throughput linkage mapping of Australian white cypress pine (Callitris glaucophylla) and map transferability to related species. Tree Genet Genomes 11:121

    Article  Google Scholar 

  • Schlautman B, Covarrubias-Pazaran G, Diaz-Garcia L, Johnson-Cicalese J, Iorrizo M, Rodriguez-Bonilla L, Bougie T, Bougie T, Wiesman E, Steffan S, Polashock J, Vorsa N, Zalapa J (2015) Development of a high-density cranberry SSR linkage map for comparative genetic analysis and trait detection. Mol Breeding 35:1–18. doi:10.1007/s11032-015-0367-5

    Article  CAS  Google Scholar 

  • Shear CL, Stevens NE and Bain HF (1931) Fungous diseases of the cultivated cranberry U.S. Department of Agriculture, Tech Bull No. 258: 57 p.

  • Stevens NE (1924) Notes on cranberry fungi in Massachusetts. Phytopathology 14:101–107

    Google Scholar 

  • Stewart CN, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. BioTechniques 5:748–750

    Google Scholar 

  • Stiles CM, Oudemans PV (1999) Distribution of cranberry fruit-rotting fungi in New Jersey and evidence for nonspecific host resistance. Phytopathology 89:218–225

    Article  CAS  PubMed  Google Scholar 

  • Tabachnick BG, Fidell LS (2007) Multivariate normality in using multivariate statistics, 5th edn. Pearson, Boston, MA

  • Tadych M, Bergen MS, Johnson-Cicalese J, Polashock JJ, Vorsa N, White JF (2012) Endophytic and pathogenic fungi of developing cranberry ovaries from flower to mature fruit: diversity and succession. Fungal Divers 54:101–116

    Article  Google Scholar 

  • Van Ooijen JW (2006) JoinMap_ 4: software for the calculation of genetic linkage maps in experimental populations: Kyazma B.V., Wageningen, NL.

  • Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu H, Senalik D, McCown BH, Zeldin EL, Speers J, Hyman J, Bassil N, Hummer K, Simon PW, Zalapa JE (2012) Mining and validation of pyrosequenced simple sequence repeats (SSRs) from American cranberry (Vaccinium macrocarpon Ait.). Theor Appl Genet 124:87–96

Download references

Acknowledgments

We are grateful to Josh Honig and Jennifer Vaiciunas for help with developing and running the SSRs and Kristia Adams, Karen DeStefano, and Sue Vancho for technical and field support. This project was supported by the USDA-SCRI under Grant 2008-51180-04878; the USDA National Institute of Food and Agriculture under the Agriculture and Food Research Initiative Competitive Grant USDA-NIFA-2013-67013-21107; Ocean Spray Cranberries, Inc.; NJ Cranberry & Blueberry Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Polashock.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Electronic supplementary material

Table S1a

(PDF 117 kb)

Table S1b

(PDF 96 kb)

Table S1c

(PDF 104 kb)

Table S1d

(PDF 97 kb)

Table S2

(PDF 53 kb)

Table S3

(PDF 6 kb)

Table S4

(PDF 6 kb)

Table S5

(PDF 196 kb)

Fig. S1

(PDF 509 kb)

Fig. S2

(PDF 641 kb)

Fig. S3

(PDF 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daverdin, G., Johnson-Cicalese, J., Zalapa, J. et al. Identification and mapping of fruit rot resistance QTL in American cranberry using GBS. Mol Breeding 37, 38 (2017). https://doi.org/10.1007/s11032-017-0639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0639-3

Keywords

Navigation