Skip to main content
Log in

TILLING by Sequencing (TbyS) for targeted genome mutagenesis in crops

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

TILLING (Targeting Induced Local Lesions in Genomes) by Sequencing (TbyS) refers to the application of high-throughput sequencing technologies to mutagenised TILLING populations as a tool for functional genomics. TbyS can be used to identify and characterise induced variation in genes (controlling traits of interest) within large mutant populations, and is a powerful approach for the study and harnessing of genetic variation in crop breeding programmes. The extension of existing TILLING platforms by TbyS will accelerate crop functional genomics studies, in concert with the rapid increase in genome editing capabilities and the number and quality of sequenced crop plant genomes. In this mini-review, we provide an overview of the growth of TbyS and its potential applications to crop molecular breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbott A (2015) Europe’s genetically edited plants stuck in legal limbo. Nature 528:319–320

    Article  CAS  PubMed  Google Scholar 

  • Acevedo-Garcia J, Spencer D, Thieron H, Reinstadler A, Hammond-Kosack K, Phillips AL, Panstruga R (2016) mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach. Plant Biotechnol J. doi:10.1111/pbi.12631

    PubMed  Google Scholar 

  • Alagoz Y, Gurkok T, Zhang B, Unver T (2016) Manipulating the biosynthesis of bioactive compound alkaloids for next-generation metabolic engineering in opium poppy using CRISPR-Cas 9 genome editing technology. Sci Rep 6:30910. doi:10.1038/srep30910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basak J, Nithin C (2015) Targeting non-coding RNAs in plants with the CRISPR-Cas technology is a challenge yet worth accepting. frontiers in plant science 6

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9(1):39

    Article  PubMed  PubMed Central  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V (2015) Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol 32:76–84. doi:10.1016/j.copbio.2014.11.007

    Article  CAS  PubMed  Google Scholar 

  • Berbel A, Ferrandiz C, Hecht V, Dalmais M, Lund OS, Sussmilch FC, Taylor SA, Bendahmane A, Ellis TH, Beltran JP, Weller JL, Madueno F (2012) VEGETATIVE1 is essential for development of the compound inflorescence in pea. Nat Commun 3:797. doi:10.1038/ncomms1801

    Article  PubMed  Google Scholar 

  • Blomstedt CK, Gleadow RM, O'Donnell N, Naur P, Jensen K, Laursen T, Olsen CE, Stuart P, Hamill JD, Moller BL, Neale AD (2012) A combined biochemical screen and TILLING approach identifies mutations in Sorghum bicolor L. Moench resulting in acyanogenic forage production. Plant Biotechnol J 10(1):54–66. doi:10.1111/j.1467-7652.2011.00646.x

    Article  PubMed  Google Scholar 

  • Boualem A, Fleurier S, Troadec C, Audigier P, Kumar AP, Chatterjee M, Alsadon AA, Sadder MT, Wahb-Allah MA, Al-Doss AA (2014) Development of a Cucumis sativus TILLinG platform for forward and reverse genetics. PLoS One 9(5):e97963

    Article  PubMed  PubMed Central  Google Scholar 

  • Brooks C, Nekrasov V, Lippman ZB, Van Eck J (2014) Efficient gene editing in tomato in the first generation using the clustered regularly interspaced short palindromic repeats/CRISPR-associated9 system. Plant Physiol 166(3):1292–1297. doi:10.1104/pp.114.247577

    Article  PubMed  PubMed Central  Google Scholar 

  • Brozynska M, Furtado A, Henry RJ (2016) Genomics of crop wild relatives: expanding the gene pool for crop improvement. Plant Biotechnol J 14(4):1070–1085. doi:10.1111/pbi.12454

    Article  CAS  PubMed  Google Scholar 

  • Cermak T, Baltes NJ, Cegan R, Zhang Y, Voytas DF (2015) High-frequency, precise modification of the tomato genome. Genome Biol 16(1):232. doi:10.1186/s13059-015-0796-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Chandrasekaran J, Brumin M, Wolf D, Leibman D, Klap C, Pearlsman M, Sherman A, Arazi T, Gal-On A (2016) Development of broad virus resistance in non-transgenic cucumber using CRISPR/Cas9 technology. Molecular plant pathology

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by ecotilling. Plant J 37(5):778–786

    Article  CAS  PubMed  Google Scholar 

  • Cooper HD, Spillane C, Hodgkin T (2001) Broadening the genetic base of crop production. CABI

  • Cooper JL, Henikoff S, Comai L, Till BJ (2013) TILLING and ecotilling for rice. Methods Mol Biol 956:39–56. doi:10.1007/978-1-62703-194-3_4

    Article  CAS  PubMed  Google Scholar 

  • Dahmani-Mardas F, Troadec C, Boualem A, Leveˆque S, Alsadon AA, Aldoss AA, Dogimont C, Bendahmane A (2010) Engineering melon plants with improved fruit shelf life using the TILLING approach. PLoS One 5(12):e15776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egelie KJ, Graff GD, Strand SP, Johansen B (2016) The emerging patent landscape of CRISPR-Cas gene editing technology. Nat Biotechnol 34(10):1025–1031

    Article  CAS  PubMed  Google Scholar 

  • Elahi N, Duncan RW, Stasolla C (2015) Decreased seed oil production in FUSCA3 Brassica napus mutant plants. Plant Physiol Biochem 96:222–230. doi:10.1016/j.plaphy.2015.08.002

    Article  CAS  PubMed  Google Scholar 

  • Fan D, Liu T, Li C, Jiao B, Li S, Hou Y, Luo K (2015) Efficient CRISPR/Cas9-mediated targeted mutagenesis in Populus in the first generation. Scientific reports 5

  • Fang Y, Tyler BM (2015) Efficient disruption and replacement of an effector gene in the oomycete Phytophthora sojae using CRISPR/Cas9. Mol Plant Pathol 17:127–139

    Article  PubMed  Google Scholar 

  • Gauffier C, Lebaron C, Moretti A, Constant C, Moquet F, Bonnet G, Caranta C, Gallois JL (2016) A TILLING approach to generate broad-spectrum resistance to potyviruses in tomato is hampered by eIF4E gene redundancy. The Plant journal : for cell and molecular biology 85(6):717–729. doi:10.1111/tpj.13136

    Article  CAS  Google Scholar 

  • Gil-Humanes J, Wang Y, Liang Z, Shan Q, Ozuna CV, Sanchez-Leon S, Baltes NJ, Starker C, Barro F, Gao C, Voytas DF (2016) High efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9. Plant J. doi:10.1111/tpj.13446

    Google Scholar 

  • Godfray HC, Garnett T (2014) Food security and sustainable intensification. Philos Trans R Soc Lond Ser B Biol Sci 369(1639):20120273. doi:10.1098/rstb.2012.0273

    Article  Google Scholar 

  • Gottwald S, Bauer P, Komatsuda T, Lundqvist U, Stein N (2009) TILLING in the two-rowed barley cultivar ‘Barke’ reveals preferred sites of functional diversity in the gene HvHox1. BMC Research Notes 2(1):258

    Article  PubMed  PubMed Central  Google Scholar 

  • Gross BL, Olsen KM (2010) Genetic perspectives on crop domestication. Trends Plant Sci 15(9):529–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartung F, Schiemann J (2014) Precise plant breeding using new genome editing techniques: opportunities, safety and regulation in the EU. Plant J 78(5):742–752. doi:10.1111/tpj.12413

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Nagalakshmi U, Lieberman MC, Ngo KJ, Krasileva KV, Vasquez-Gross H, Akhunova A, Akhunov E, Dubcovsky J, Tai TH (2014) Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 26(4):1382–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofer J, Turner L, Moreau C, Ambrose M, Isaac P, Butcher S, Weller J, Dupin A, Dalmais M, Le Signor C, Bendahmane A, Ellis N (2009) Tendril-less regulates tendril formation in pea leaves. Plant Cell 21(2):420–428. doi:10.1105/tpc.108.064071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang S, Weigel D, Beachy RN, Li J (2016) A proposed regulatory framework for genome-edited crops. Nat Genet 48(2):109

    Article  CAS  PubMed  Google Scholar 

  • King R, Bird N, Ramirez-Gonzalez R, Coghill JA, Patil A, Hassani-Pak K, Uauy C, Phillips AL (2015) Mutation scanning in wheat by exon capture and next-generation sequencing. PLoS One 10(9):e0137549. doi:10.1371/journal.pone.0137549

    Article  PubMed  PubMed Central  Google Scholar 

  • Konzak CF, Nilan RA, Kleinhofs A (1976) Artificial mutagenesis as an aid in overcoming genetic vulnerability of crop plants. Basic Life Sci 8:163–177

    CAS  PubMed  Google Scholar 

  • Kovach MJ, McCouch SR (2008) Leveraging natural diversity: back through the bottleneck. Curr Opin Plant Biol 11(2):193–200. doi:10.1016/j.pbi.2007.12.006

    Article  CAS  PubMed  Google Scholar 

  • Kumar AP, Boualem A, Bhattacharya A, Parikh S, Desai N, Zambelli A, Leon A, Chatterjee M, Bendahmane A (2013) SMART—sunflower mutant population and reverse genetic tool for crop improvement. BMC Plant Biol 13:38. doi:10.1186/1471-2229-13-38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai KS, Kaothien-Nakayama P, Iwano M, Takayama S (2012) A TILLING resource for functional genomics in Arabidopsis thaliana accession C24. Genes & Genetic Systems 87(5):291–297

    Article  CAS  Google Scholar 

  • Ledford H (2016) Titanic clash over CRISPR patents turns ugly. Nature 537(7621):460–461

    Article  CAS  PubMed  Google Scholar 

  • Li J, Meng X, Zong Y, Chen K, Zhang H, Liu J, Li J, Gao C (2016) Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9. Nat Plants 2:16139. doi:10.1038/nplants.2016.139

    Article  CAS  PubMed  Google Scholar 

  • Lowder LG, Zhang D, Baltes NJ, Paul JW 3rd, Tang X, Zheng X, Voytas DF, Hsieh TF, Zhang Y, Qi Y (2015) A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169(2):971–985. doi:10.1104/pp.15.00636

    Article  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Zhang Z, Feng Z, Wei P, Zhang H, Botella JR, Zhu JK (2016) Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis. Plant Biotechnol J 14(2):519–532

    Article  CAS  PubMed  Google Scholar 

  • McDougall P (2011) The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. Phillips McDougall, United Kingdom

    Google Scholar 

  • McKeown PC, Fort A, Duszynska D, Sulpice R, Spillane C (2013a) Emerging molecular mechanisms for biotechnological harnessing of heterosis in crops. Trends Biotechnol 31:549–551

    Article  CAS  PubMed  Google Scholar 

  • McKeown PC, Keshavaiah C, Fort A, Tuteja R, Chatterjee M, Varshney RK, Spillane C (2013b) Genomics in agriculture and food processing. In: Panesar PS, Marwaha SS (eds) Biotechnology in agriculture and food processing: Opportunities and challenges. Taylor & Francis, CRC Press

  • Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14(12):840–852

    Article  CAS  PubMed  Google Scholar 

  • Minoia S, Boualem A, Marcel F, Troadec C, Quemener B, Cellini F, Petrozza A, Vigouroux J, Lahaye M, Carriero F, Bendahmane A (2016) Induced mutations in tomato SlExp1 alter cell wall metabolism and delay fruit softening. Plant Sci 242:195–202. doi:10.1016/j.plantsci.2015.07.001

    Article  CAS  PubMed  Google Scholar 

  • Missirian V, Comai L, Filkov V (2011) Statistical mutation calling from sequenced overlapping DNA pools in TILLING experiments. BMC Bioinformatics 12:287. doi:10.1186/1471-2105-12-287

    Article  PubMed  PubMed Central  Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147(3):969–977. doi:10.1104/pp.108.118232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morineau C, Bellec Y, Tellier F, Gissot L, Kelemen Z, Nogue F, Faure JD (2016) Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa. Plant Biotechnol J. doi:10.1111/pbi.12671

    PubMed  Google Scholar 

  • Morris SH, Spillane C (2008) GM directive deficiencies in the European Union. EMBO Rep 9(6):500–504. doi:10.1038/embor.2008.94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy D (2007) Plant breeding and biotechnology. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gómez-Guillamón ML, Truniger V, Gómez P, Garcia-Mas J, Aranda MA (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7(1):34

    Article  PubMed  PubMed Central  Google Scholar 

  • Onda Y, Mochida K (2016) Exploring genetic diversity in plants using high-throughput sequencing techniques. Curr Genomics 17(4):358–367. doi:10.2174/1389202917666160331202742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parry MA, Madgwick PJ, Bayon C, Tearall K, Hernandez-Lopez A, Baudo M, Rakszegi M, Hamada W, Al-Yassin A, Ouabbou H (2009) Mutation discovery for crop improvement. J Exp Bot 60(10):2817–2825

    Article  CAS  PubMed  Google Scholar 

  • Perry J, Brachmann A, Welham T, Binder A, Charpentier M, Groth M, Haage K, Markmann K, Wang TL, Parniske M (2009) TILLING in Lotus japonicus identified large allelic series for symbiosis genes and revealed a bias in functionally defective ethyl methanesulfonate alleles toward glycine replacements. Plant Physiol 151(3):1281–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puchta H (2016) Applying CRISPR/Cas for genome engineering in plants: the best is yet to come. Curr Opin Plant Biol 36:1–8. doi:10.1016/j.pbi.2016.11.011

    Article  PubMed  Google Scholar 

  • Pyott DE, Sheehan E, Molnar A (2016) Engineering of CRISPR/Cas9-mediated potyvirus resistance in transgene-free Arabidopsis plants. Mol Plant Pathol 17(8):1276–1288. doi:10.1111/mpp.12417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quetier F (2016) The CRISPR-Cas9 technology: closer to the ultimate toolkit for targeted genome editing. Plant Sci 242:65–76. doi:10.1016/j.plantsci.2015.09.003

    Article  CAS  PubMed  Google Scholar 

  • Reddy TV, Dwivedi S, Sharma NK (2012) Development of TILLING by sequencing platform towards enhanced leaf yield in tobacco. Ind Crop Prod 40:324–335

    Article  CAS  Google Scholar 

  • Ricroch A, Harwood W, Svobodová Z, Sági L, Hundleby P, Badea EM, Rosca I, Cruz G, Salema Fevereiro MP, Marfà Riera V (2015) Challenges facing European agriculture and possible biotechnological solutions. Crit Rev Biotechnol:1–9

  • Ricroch AE, Ammann K, Kuntz M (2016a) Editing EU legislation to fit plant genome editing. EMBO reports: e201643099

  • Ricroch AE, Ammann K, Kuntz M (2016b) Editing EU legislation to fit plant genome editing. EMBO Rep. doi:10.15252/embr.201643099

    PubMed  Google Scholar 

  • Scully ED, Gries T, Funnell-Harris DL, Xin Z, Kovacs FA, Vermerris W, Sattler SE (2015) Characterization of novel Brown midrib 6 mutations affecting lignin biosynthesis in sorghum. J Integr Plant Biol. doi:10.1111/jipb.12375

    PubMed  Google Scholar 

  • Sestili F, Botticella E, Bedo Z, Phillips A, Lafiandra D (2010) Production of novel allelic variation for genes involved in starch biosynthesis through mutagenesis. Mol Breed 25(1):145–154. doi:10.1007/s11032-009-9314-7

    Article  CAS  Google Scholar 

  • Seth K, Harish (2016) Current status of potential applications of repurposed Cas9 for structural and functional genomics of plants. Biochem Biophys Res Commun. doi:10.1016/j.bbrc.2016.10.130

    Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu J-L (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688

    Article  CAS  PubMed  Google Scholar 

  • Shen L, Wang C, Fu Y, Wang J, Liu Q, Zhang X, Yan C, Qian Q, Wang K (2016) QTL editing confers opposing yield performance in different rice varieties. J Integr Plant Biol. doi:10.1111/jipb.12501

    Google Scholar 

  • Sheridan C (2014) First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol 32(7):599–601. doi:10.1038/nbt0714-599

    Article  CAS  PubMed  Google Scholar 

  • Sherkow JS (2015) Law, history and lessons in the CRISPR patent conflict. Nat Biotechnol 33(3):256–257. doi:10.1038/nbt.3160

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Gao H, Wang H, Lafitte HR, Archibald RL, Yang M, Hakimi SM, Mo H, Habben JE (2016) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J. doi:10.1111/pbi.12603

    Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23(1):75–81. doi:10.1038/nbt1043

    Article  CAS  PubMed  Google Scholar 

  • Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14(2):109–115

    Article  CAS  PubMed  Google Scholar 

  • Smyth SJ (2016) Canadian regulatory perspectives on genome engineered crops. GM Crops Food: 0. doi:10.1080/21645698.2016.1257468

  • Soyk S, Muller NA, Park SJ, Schmalenbach I, Jiang K, Hayama R, Zhang L, Van Eck J, Jimenez-Gomez JM, Lippman ZB (2016) Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet. doi:10.1038/ng.3733

    PubMed  Google Scholar 

  • Spillane C, Swanson T (2002) Agricultural biotechnology and developing countries: proprietary knowledge and diffusion of benefits. Biotechnology, agriculture and the developing world: The distributional implications of technological change:67–134

  • Sprink T, Eriksson D, Schiemann J, Hartung F (2016a) Regulatory hurdles for genome editing: process- vs. product-based approaches in different regulatory contexts. Plant Cell Rep 35(7):1493–1506. doi:10.1007/s00299-016-1990-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprink T, Eriksson D, Schiemann J, Hartung F (2016b) Regulatory hurdles for genome editing: process-vs. product-based approaches in different regulatory contexts. Plant cell reports: 1–14

  • Straubeta A, Lahaye T (2013) Zinc fingers, TAL effectors, or Cas9-based DNA binding proteins: what’s best for targeting desired genome loci? Mol Plant 6(5):1384–1387. doi:10.1093/mp/sst075

    Article  PubMed  Google Scholar 

  • Sulpice R, McKeown PC (2015) Moving towards a comprehensive map of central plant metabolism. Annual review of plant biology 66 (1)

  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169(2):931–945. doi:10.1104/pp.15.00793

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang H, Sezen U, Paterson AH (2010) Domestication and plant genomes. Curr Opin Plant Biol 13(2):160–166. doi:10.1016/j.pbi.2009.10.008

    Article  CAS  PubMed  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13(3):524–530. doi:10.1101/gr.977903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007a) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. The Plant journal : for cell and molecular biology 51(6):1116–1125. doi:10.1111/j.1365-313X.2007.03201.x

    Article  CAS  Google Scholar 

  • Triques K, Sturbois B, Gallais S, Dalmais M, Chauvin S, Clepet C, Aubourg S, Rameau C, Caboche M, Bendahmane A (2007b) Characterization of Arabidopsis thaliana mismatch specific endonucleases: application to mutation discovery by TILLING in pea. Plant J 51(6):1116–1125. doi:10.1111/j.1365-313X.2007.03201.x

    Article  CAS  PubMed  Google Scholar 

  • Tsai H, Howell T, Nitcher R, Missirian V, Watson B, Ngo KJ, Lieberman M, Fass J, Uauy C, Tran RK, Khan AA, Filkov V, Tai TH, Dubcovsky J, Comai L (2011) Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol 156(3):1257–1268. doi:10.1104/pp.110.169748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai H, Missirian V, Ngo KJ, Tran RK, Chan SR, Sundaresan V, Comai L (2013) Production of a high-efficiency TILLING population through polyploidization. Plant Physiol 161(4):1604–1614. doi:10.1104/pp.112.213256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uluisik S, Chapman NH, Smith R, Poole M, Adams G, Gillis RB, Besong TM, Sheldon J, Stiegelmeyer S, Perez L, Samsulrizal N, Wang D, Fisk ID, Yang N, Baxter C, Rickett D, Fray R, Blanco-Ulate B, Powell AL, Harding SE, Craigon J, Rose JK, Fich EA, Sun L, Domozych DS, Fraser PD, Tucker GA, Grierson D, Seymour GB (2016) Corrigendum: genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34(10):1072. doi:10.1038/nbt1016-1072d

    Article  CAS  PubMed  Google Scholar 

  • Upadhyay SK, Kumar J, Alok A, Tuli R (2013) RNA-guided genome editing for target gene mutations in wheat. G3: Genes| Genomes| Genetics 3(12):2233–2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Wiel C, Lotz L, de Bakker H, Smulders M (2016) Intellectual property rights and native traits in plant breeding. UR Plant Breeding, Wageningen

    Book  Google Scholar 

  • Van Hintum TJL, Brown AHD, Spillane C, Hodgkin T Core collections of Plant Genetic Resources. 2000 In: IPGRI technical bulletin, IPGRI, Rome. pp 1–48

  • van Nimwegen KJ, van Soest RA, Veltman JA, Nelen MR, van der Wilt GJ, Vissers LE, Grutters JP (2016) Is the $1000 genome as near as we think? A cost analysis of next-generation sequencing. Clin Chem. doi:10.1373/clinchem.2016.258632

    PubMed  Google Scholar 

  • Vicente-Dolera N, Troadec C, Moya M, del Rio-Celestino M, Pomares-Viciana T, Bendahmane A, Pico B, Roman B, Gomez P (2014) First TILLING platform in Cucurbita pepo: a new mutant resource for gene function and crop improvement. PLoS One 9(11):e112743. doi:10.1371/journal.pone.0112743

    Article  PubMed  PubMed Central  Google Scholar 

  • Visendi P, Batley J, Edwards D (2013) Next generation characterisation of cereal genomes for marker discovery. Biology 2(4):1357–1377

    Article  PubMed  PubMed Central  Google Scholar 

  • Voytas DF, Gao C (2014) Precision genome engineering and agriculture: opportunities and regulatory challenges. PLoS Biol 12(6):e1001877

    Article  PubMed  PubMed Central  Google Scholar 

  • Waltz E (2016) Gene-edited CRISPR mushroom escapes US regulation. Nature 532(7599):293. doi:10.1038/nature.2016.19754

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang L, Tan Q, Fan Q, Zhu H, Hong Z, Zhang Z, Duanmu D (2016) Efficient inactivation of symbiotic nitrogen fixation related genes in Lotus Japonicus using CRISPR-Cas9. Front Plant Sci 7:1333. doi:10.3389/fpls.2016.01333

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Uauy C, Till B, Liu CM (2010) TILLING and associated technologies. J Integr Plant Biol 52(11):1027–1030

    Article  PubMed  Google Scholar 

  • Wang TL, Uauy C, Robson F, Till B (2012) TILLING in extremis. Plant Biotechnol J 10(7):761–772. doi:10.1111/j.1467-7652.2012.00708.x

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu J-L (2014a) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotech 32(9):947–951. doi:10.1038/nbt.2969 http://www.nature.com/nbt/journal/v32/n9/abs/nbt.2969.html-supplementary-information

    Article  CAS  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014b) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32(9):947–951. doi:10.1038/nbt.2969

    Article  CAS  PubMed  Google Scholar 

  • Wang Z-P, Xing H-L, Dong L, Zhang H-Y, Han C-Y, Wang X-C, Chen Q-J (2015) Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation. Genome Biol 16(1):1

    Article  Google Scholar 

  • Warschefsky E, Penmetsa RV, Cook DR, von Wettberg EJ (2014) Back to the wilds: tapping evolutionary adaptations for resilient crops through systematic hybridization with crop wild relatives. Am J Bot 101(10):1791–1800. doi:10.3732/ajb.1400116

    Article  PubMed  Google Scholar 

  • Weil CF (2009) TILLING in grass species. Plant Physiol 149(1):158–164. doi:10.1104/pp.108.128785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolt JD, Wang K, Yang B (2015) The regulatory status of genome-edited crops. Plant Biotechnol J. doi:10.1111/pbi.12444

    PubMed  PubMed Central  Google Scholar 

  • Zhou H, He M, Li J, Chen L, Huang Z, Zheng S, Zhu L, Ni E, Jiang D, Zhao B, Zhuang C (2016) Development of commercial thermo-sensitive genic male sterile rice accelerates hybrid rice breeding using the CRISPR/Cas9-mediated TMS5 editing system. Sci Rep 6:37395. doi:10.1038/srep37395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu C, Bortesi L, Baysal C, Twyman RM, Fischer R, Capell T, Schillberg S, Christou P (2016) Characteristics of genome editing mutations in cereal crops. Trends Plant Sci. doi:10.1016/j.tplants.2016.08.009

    Google Scholar 

Download references

Acknowledgements

CS is supported by Science Foundation Ireland (SFI; grants 02/IN.1/B49 and 08/IN.1/B1931). AK acknowledges the support of an NUI Galway College of Science studentship and support from BenchBio Pvt. Ltd. and its staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Spillane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A.P.K., McKeown, P.C., Boualem, A. et al. TILLING by Sequencing (TbyS) for targeted genome mutagenesis in crops. Mol Breeding 37, 14 (2017). https://doi.org/10.1007/s11032-017-0620-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-017-0620-1

Keywords

Navigation