Skip to main content
Log in

Identification of major stable QTLs for flower color in roses

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Flower color is one of the most important traits of ornamental roses. Anthocyanins are the major secondary metabolites responsible for the red and pink colors found among rose cultivars. Color varies depending on the combination of particular anthocyanins, their co-factors and their concentrations. Several genetic investigations have indicated that variation in flower color is dependent on monogenic factors and quantitative trait loci (QTL). Here, we analyze quantitative variation of total anthocyanins in diploid rose progeny. We demonstrate that the environment produces relatively small effects; the main causes of variation in anthocyanin content are the genetic differences between individuals. Two major QTLs were detected in all six tested environments. Four additional QTLs were found only in a subset of the environments. Some of the QTLs either co-segregate or are located close to the map positions of known structural genes of the anthocyanin biosynthesis pathway or transcriptional regulators of anthocyanin biosynthesis. This information might be used to characterize tetraploid parental genotypes for their potential to pass on higher anthocyanin contents to their progeny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958–970

    Article  CAS  PubMed  Google Scholar 

  • Ban Y, Mitani N, Hayashi T, Sato A, Azuma A, Kono A, Kobayashi S (2014) Exploring quantitative trait loci for anthocyanin content in interspecific hybrid grape (Vitis labruscana × Vitis vinifera). Euphytica 198:101–114

    Article  CAS  Google Scholar 

  • Biolley JP, Jay M (1993) Anthocyanins in modern roses-chemical and colorimetric features in relation to the color range. J Exp Bot 44:1725–1734

    Article  CAS  Google Scholar 

  • Biolley JP, Jay M, Viricel MR (1994) Flavonoid diversity and metabolism in 10 Rosa × hybrida cultivars. Phytochemistry 35:413–419

    Article  CAS  Google Scholar 

  • Bushara JM, Krieger C, Deng D, Stephens MJ, Allan AC, Storey R, Symonds VV, Stevenson D, McGhie T, Chagne D et al (2013) QTL involved in the modification of cyanidin compounds in black and red raspberry fruit. Theor Appl Genet 126:847–865

    Article  Google Scholar 

  • Byrne DH (2009) Rose structural genomics. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosacea, Plant genetics and genomics: crops and models 6. Springer Science and Business Media, New York, pp 353–379

    Chapter  Google Scholar 

  • Clausen J, Keck DD, Hiesey WM (1940) Experimental studies on the nature of species I. Effect of varied environments on Western North American plants. Carnegie Institute of Washington Publication No. 520, 452 pp

  • De Vries DP, Van Keulen HA, Debruyn JW (1974) Breeding research on rose pigments 1. Occurrence of flavonoids and carotenoids in rose petals. Euphytica 23:447–457

    Article  Google Scholar 

  • De Vries DP, Garretsen F, Dubois LAM, Van Keulen HA (1980) Breeding research on rose pigments II. Combining ability analyses of variance of four flavonoids in F1 populations. Euphytica 29:115–120

    Article  Google Scholar 

  • Debener T (1999) Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. Gartenbauwissenschaft 64:14–20

    Google Scholar 

  • Debener T, Hibrand-Saint Oyant L (2009) Genetic engineering and tissue culture of roses. In: Folta KM, Gardiner SE (eds) Genetics and genomics of rosacea, Plant genetics and genomics: crops and models 6. Springer Science and Business Media, New York, pp 393–409

    Chapter  Google Scholar 

  • Debener T, Mattiesch L (1999) Construction of a genetic linkage map for roses using RAPD and AFLP markers. Theor Appl Genet 99:891–899

    Article  CAS  Google Scholar 

  • Espley RV, Hellens RP, Putterill J, Stevenson DE, Kutty-Amma S, Allan AC (2007) Red coloration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J 49:414–427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Forkmann G (2003) Flavonoid molecular biology. In: Roberts AV, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier, Amsterdam, pp 256–263

    Chapter  Google Scholar 

  • Fournier-Level A, Le Cunff L, Gomez C, Doligez A, Ageorges A, Roux C, Bertrand Y, Souquet J, Cheynier V, This P (2009) Quantitative genetic bases of anthocyanin variation in grape (Vitis vinifera L. ssp. sativa) berry: a quantitative trait locus to quantitative trait nucleotide integrated study. Genetics 183:1127–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Grotewold E (2006) The genetics and biochemistry of floral pigments. Annu Rev Plant Biol 57:761–780

    Article  CAS  PubMed  Google Scholar 

  • Gudin S (2000) Rose: genetics and breeding. Plant Breed 17:159–189

    CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High-resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jay M, Biolley JP, Fiasson JL, Fiasson K, Gonnet JF, Grossi C, Raymond O, Viricel MR (2003) Anthocyanins and other flavonoid pigments. In: Roberts AV, Debener T, Gudin S (eds) Encyclopedia of rose science. Elsevier, Amsterdam, pp 248–256

    Chapter  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, Togami J, Pigeaire A et al (2007) Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol 48:1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  • Linde M, Hattendorf A, Kaufmann H, Debener T (2006) Powdery mildew resistance in roses: QTL mapping in different environments using selective genotyping. Theor Appl Genet 113:1081–1092

    Article  CAS  PubMed  Google Scholar 

  • Marshall HH, Campbell CG, Collicutt LM (1983) Breeding for anthocyanin colours in Rosa. Euphytica 32:205–216

    Article  Google Scholar 

  • Mikanagi Y, Yokoi M, Ueda Y, Saito N (1995) Flower flavonol and anthocyanin distribution in subgenus Rosa. Biochem Syst Ecol 23:183–200

    Article  CAS  Google Scholar 

  • Ogata J, Kanno Y, Itoh Y, Tsugawa H, Suzuki M (2005) Plant biochemistry: anthocyanin biosynthesis in roses. Nature 435:757–758

    Article  CAS  PubMed  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain-reaction. Genomics 5:874–879

    Article  CAS  PubMed  Google Scholar 

  • Picone JM, Clery RA, Watanabe N, MacTavish HS, Turnbull CGN (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219:468–478

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

  • Schistl FP, Johnson SD (2003) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315

    Article  Google Scholar 

  • Schmitzer V, Stampar F (2010) Changes in anthocyanin and selected phenolics in “DORcrisett” rose flowers due to substrate pH and foliar application of sucrose. Acta Hortic 870:89–93

    Article  CAS  Google Scholar 

  • Schmitzer V, Veberic R, Osterc G, Stampar F (2010) Color and phenolic content changes during flower development in groundcover rose. J Am Soc Hortic Sci 135:195–202

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Spiller M, Berger RG, Debener T (2010) Genetic dissection of scent metabolic profiles in diploid rose populations. Theor Appl Genet 120:1461–1471

    Article  CAS  PubMed  Google Scholar 

  • Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai C-J, Byrne DH, Smulders MJM et al (2011) Towards a unified genetic map for diploid roses. Theor Appl Genet 122:489–500

    Article  PubMed  Google Scholar 

  • Stam P (1993) Construction of integrated genetic-linkage maps by means of a new computer package—Joinmap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • van Ooijen JW (1992) Accuracy of mapping quantitative trait loci in autogamous species. Theor Appl Genet 84:803–811

    Article  PubMed  Google Scholar 

  • van Ooijen JW (2004) MapQTL® 6, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • van Ooijen JW (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Xie RJ, Zheng L, He SL, Zheng YQ, Yi SL, Deng L (2011) Anthocyanin biosynthesis in fruit tree crops: genes and their regulation. Afr J Biotechnol 10:19890–19897

    CAS  Google Scholar 

  • Xu W, Dubos C, Pepiniec L (2015) Transcriptional control of flavonoid biosynthesis by Myb–bLHL–WDR complexes. Trends Plant Sci 20:176–185

    Article  CAS  PubMed  Google Scholar 

  • Yuan YW, Sagawa JM, Young RC, Christensen BJ, Bradshaw HD (2013) Genetic dissection of a major anthocyanin QTL contributing to pollinator-mediated reproductive isolation between sister species of Mimulus. Genetics 194:255–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Debener.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 39 kb)

Supplementary Fig. 1

Flowers of selected F1 individuals of the population 97/7 representing the range of petal coloration. Supplementary material 1 (PDF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henz, A., Debener, T. & Linde, M. Identification of major stable QTLs for flower color in roses. Mol Breeding 35, 190 (2015). https://doi.org/10.1007/s11032-015-0382-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-015-0382-6

Keywords

Navigation