Skip to main content
Log in

The effect of epistasis between linked genes on quantitative trait locus analysis

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The effect of epistasis between linked genes on quantitative trait locus (QTL) analysis was studied as a function of their contribution to the phenotypic variance and their genetic distance by simulation of F2 (at least 200 individuals) and recombinant inbred line (RIL) populations. Data sets were replicated 100 times. For F2 populations, the presence of epistasis improves the detection of QTLs having effects in opposite directions. Epistasis between linked QTLs (26.5 cM) was poorly detected even when its contribution was relatively high compared to the main effects, and was null for heritabilities lower than 0.10. The detection of false-positive main effects is strongly affected by the distance between epistatic QTLs. The closer they are (≤11.5 cM), the higher the probability of detecting false-positive main-effect QTLs and the lower the probability of detecting epistatic effects. In this case, the presence of main-effect QTLs is due to the deviation of the heterozygote from the homozygotes at each linked interacting QTL and is algebraically explained by the joint effect of the linkage and the additive-by-additive interaction, resulting in a heterosis at a single genomic region in the absence of simulated dominant genetic effects. The number of false-positive main effects only reached nominal levels at about 100 cM. For RIL populations, the number of false positives or the detection of existing epistasis does not depend on the distance, and the power to detect epistatic QTLs is much higher even with small sample sizes and low contributions to the trait. RIL populations are highly recommended to detect epistatic QTLs and to better infer the genetic architecture of a quantitative trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez-Castro JM, Carlborg Ö (2007) A unified model for functional and statistical epistasis and its application in quantitative trait loci analysis. Genetics 176:1151–1167

    Article  PubMed  PubMed Central  Google Scholar 

  • Asins MJ, Villalta I, Bernet GP, Carbonell EA (2009) QTL analysis in plant breeding. In: Jain SM, Brar DS (eds) Molecular techniques in crop improvement. doi:10.1007/978-90-481-2967-6_1. Springer Science + Business Media BV

  • Asins MJ, Villalta I, Aly MM, Olías R, Álvarez De Morales P, Huertas R, Li J, Jaime-Pérez N, Haro R, Raga V, Carbonell EA, Belver A (2013) Two closely linked tomato HKT coding genes are positional candidates for the major tomato QTL involved in Na+/K+ homeostasis. Plant Cell Environ 36:1171–1191

    Article  PubMed  CAS  Google Scholar 

  • Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact 21:859–868

    Article  PubMed  CAS  Google Scholar 

  • Bateson W (1909) Mendel’s principles of heredity. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Birchler JA, Yao H, Chudalayandi S (2006) Unraveling the genetic basis of hybrid vigor. Proc Natl Acad Sci USA 103:12957–12958

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890

    Article  PubMed  CAS  Google Scholar 

  • Carlborg Ö, Haley CS (2004) Epistasis: too often neglected in complex trait studies. Nat Rev 5:618–625

    Article  CAS  Google Scholar 

  • Causse M, Chaïb J, Buret M, Lecomte L, Hospital F (2007) Both additivity and epistasis control the genetic variation for fruit quality traits in tomato. Theor Appl Genet 115:429–442

    Article  PubMed  CAS  Google Scholar 

  • Cockerham CC (1954) An extension of the concept of partitioning hereditary variance for analysis of covariances among relatives when epistasis is present. Genetics 39:859–882

    PubMed  CAS  PubMed Central  Google Scholar 

  • Doebley J, Stec A, Gustus C (1995) Teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    PubMed  CAS  PubMed Central  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fisher RA (1918) The correlation between relatives on the supposition of Mendelian inheritance. Trans R Soc Edinb 52:399–433

    Article  Google Scholar 

  • Frankel WN, Schork NJ (1996) Who’s afraid of epistasis? Nat Genet 14:371–373

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genomics 266:821–826

    Article  PubMed  CAS  Google Scholar 

  • Gjuvsland AB, Hayes BJ, Omholt SW, Carlborg Ö (2007) Statistical epistasis is a generic feature of gene regulatory networks. Genetics 175:411–429

    Article  PubMed  PubMed Central  Google Scholar 

  • Hua J, Xing Y, Wu W, Xu C, Sun X et al (2003) Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 100:2574–2579

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kao CH, Zeng ZB (2002) Modeling epistasis of quantitative trait loci usig Cockerham’s model. Genetics 160:1243–1261

    PubMed  PubMed Central  Google Scholar 

  • Keurentjes JJB, Sulpice R, Gibon Y, Steinhauser MC, Fu J, Koorneef M, Stitt M, Vreugdenhill D (2008) Integrative analyses of genetic variation in enzyme activities of primary carbohydrate metabolism reveal distinct modes of regulation in Arabidopsis thaliana. Genome Biol 9:R129

    Article  PubMed  PubMed Central  Google Scholar 

  • Kroymann J, Mitchell-Olds T (2005) Epistasis and balanced polymorphism influencing complex trait variation. Nature 435:95–98

    Article  PubMed  CAS  Google Scholar 

  • Kusterer B, Piepho H-P, Utz HF, Schön CC, Muninovic J et al (2007) Heterosis for biomass-related traits in Arabidopsis investigated by a quantitative trait loci analysis of the triple testcross design with recombinant inbred lines. Genetics 177:1839–1850

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lewers KS, Crane EH, Bronson CR, Schupp JM, Keimand P, Shoemaker RC (1999) Detection of linked QTL for soybean brown stem rot resistance in ‘BSR 101’ as expressed in growth chamber environment. Mol Breed 5:33–42

    Article  Google Scholar 

  • Li Z, Pinson SR, Park WD, Paterson AH, Stansel JW (1997) Epistasis for three yield components in rice (Oryza sativa L.). Genetics 145:453–465

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Wang DL, Shu QY et al (2001) Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics 158:1737–1753

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lippman ZB, Semel Y, Zamir D (2007) An integrated view of quantitative trait variation using tomato interspecific introgression lines. Curr Opin Genet Dev 17:545–552

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE, Utz HF, Piepho H-P, Zeng Z-B, Schön CC (2007a) The role of epistasis in the manifestation of heterosis: a system-oriented approach. Genetics 177:1815–1825

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Melchinger AE, Piepho H-P, Utz HF, Muninovic J, Wegenast T, Törjék O, Altmann T, Kusterer B (2007b) Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics 177:1827–1837

    Article  PubMed  PubMed Central  Google Scholar 

  • Monforte A, Tanksley SD (2000) Development of a set of near isogenic and backcross recombinant inbred lines containing most of the Lycopersicon hirsutum genome in a L. esculentum genetic background: a tool for gene mapping and gene discovery. Genome 43:803–813

    Article  PubMed  CAS  Google Scholar 

  • Monosi B, Wisser RJ, Pennill L, Hulbert SH (2004) Full genome analysis of resistance gene homologues in rice. Theor Appl Genet 109:1434–1447

    Article  PubMed  CAS  Google Scholar 

  • Purcell S, Sham PC (2004) Epistasis in quantitative trait locus linkage analysis: interaction or main effect? Behav Genet 34:143–15222

    Article  PubMed  Google Scholar 

  • Purugganan MD, Fuller DQ (2009) The nature of selection during plant domestication. Nature 457:843–848

    Article  PubMed  CAS  Google Scholar 

  • Rowe HC, Hansen BG, Halkier BA, Kliebenstein DJ (2008) Biochemical networks and epistasis shape the Arabidopsis thaliana metabolome. Plant Cell 20:1199–1216

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Overdominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Steinmetz LM, Sinha H, Richards DR, Spiegelman JI, Oefner PJ, McCusker JH, Davis RW (2002) Dissecting the architecture of a quantitative trait locus in yeast. Nature 416:326–330

    Article  PubMed  CAS  Google Scholar 

  • Studer AJ, Doebley JF (2011) Do large effect QTL fractionate? A case study at the maize domestication QTL teosinte branched1. Genetics 188:673–681

    Article  PubMed  PubMed Central  Google Scholar 

  • Syed NH, Chen ZJ (2005) Molecular marker genotypes, heterozygosity and genetic interactions explain heterosis in Arabidopsis thaliana. Heredity 94:295–304

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Van Ooijen JW (2006) JoinMap® 4. Software for the calculation of genetic maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Visker MHPW, Keizer LCP, Van Eck HJ, Jaconsen E, Colon LT, Struik PC (2003) Can the QTL for late blight resistance on potato chromosome 5 be attributed to foliage maturity type? Theor Appl Genet 106:317–325

    PubMed  CAS  Google Scholar 

  • Wang J, Li H, Zhang L, Meng L (2012a) User’s manual of QTL IciMapping. Version 3.2. http://www.isbreeding.net

  • Wang SC, Basten CJ, Zeng Z-B (2012b) Cartographer 2.5 department of statistics. North Carolina State University, Raleigh NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Xing YZ, Tan YF, Hua JP, Sun XL, Xu CG et al (2002) Characterization of the main effects, epistatic effects and their environmental interactions of QTLs in the genetic basis of yield traits in rice. Theor Appl Genet 105:248–257

    Article  PubMed  CAS  Google Scholar 

  • Yang RC (2004) Epistasis of quantitative trait loci under different gene action models. Genetics 167:1493–1505

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang J, Hu C, Ye X, Zhu J (2005) QTL Network 2.0 user manual. http://ibi.zju.edu.cn/software/qtlnetwork

  • Yu SB, Li JX, Xu CG, Tan YF, Gao YJ, Li XH, Zhang Q, Marrof S (1997) Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci USA 94:9226–9231

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhang L, Li H, Li Z, Wang J (2008) Interactions between markers can be caused by the dominant effect of QTL. Genetics 180:1177–1190

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by Grants RTA2011-00132-C02 and 289365 (ROOTOPOWER) funded by the European Union, FP7-KBBE-2011-5. Suggestions by Dr. M. Baselga and by an anonymous reviewer are deeply appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Carbonell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asins, M.J., Carbonell, E.A. The effect of epistasis between linked genes on quantitative trait locus analysis. Mol Breeding 34, 1125–1135 (2014). https://doi.org/10.1007/s11032-014-0104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-014-0104-5

Keywords

Navigation