Skip to main content
Log in

The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A genotyping by sequencing (GbS) approach is reported in blackcurrant (Ribes nigrum L.) using a de novo read assembly method developed because of the current absence of a reference genome sequence for this species. A new approach to single nucleotide polymorphism (SNP) genotype calling is described, where individual genotypes for a large number of SNPs were characterised from the GbS counts using a novel method based on a functional regression of major and minor allele read counts. The high-quality GbS SNPs were combined with SNPs and simple sequence repeats generated from other technologies to develop a linkage map with increased marker density and improved genome coverage, containing up to 204 SNPs on each linkage group. SNPs of lower quality were then located on the map using quantitative trait locus (QTL) interval mapping of the proportion of the major allele. Two QTL each for 100-berry weight and Brix scores, measured over three years, were identified using the map. The use of this approach to identify and map a significant number of novel SNPs in a woody species with hitherto limited genomic resources may have generic application to other under-resourced and minor species in the development of cost-effective and efficient high-density genetic maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GbS:

Genotyping by sequencing

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeat

AFLP:

Amplified fragment length polymorphism

QTL:

Quantitative trait locus

2GS:

Second-generation sequencing

SbG:

Sequencing-based genotyping

RRL:

Reduced representation libraries

RAD:

Restriction site associated DNA

HBW:

100-Berry weight

References

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Brennan RM (1996) Currants and gooseberries. In: Janick J, Moore JN (eds) Fruit breeding, vol II. Small fruits and vine crops. Wiley, New York, pp 191–295

    Google Scholar 

  • Brennan R, Jorgensen L, Woodhead M, Russell J (2002) Development and characterisation of SSR markers in Ribes species. Mol Ecol Notes 2:327–330

    Article  CAS  Google Scholar 

  • Brennan R, Jorgensen L, Hackett C, Woodhead M, Gordon SL, Russell J (2008) The development of a genetic linkage map of blackcurrant (Ribes nigrum L.) and the identification of regions associated with key fruit quality and agronomic traits. Euphytica 161:19–34

    Article  CAS  Google Scholar 

  • Brennan R, Jorgensen L, Gordon SL, Loades K, Hackett C, Russell J (2009) The development of a PCR-based marker linked to resistance to the blackcurrant gall mite (Cecidophyopsis ribis Acari: Eriophyidae). Theor Appl Genet 118:205–212

    Article  CAS  PubMed  Google Scholar 

  • Byrne S, Czaban A, Studer B, Panitz F, Bendixen C, Asp T (2013) Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. PLoS ONE 8:e57438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiche J, Brown SC, Leclerc J-L, Siljak-Yacovlev S (2003) Genome size, heterochromatin organisation and ribosomal gene mapping in four species of Ribes. Can J Bot 81:1049–1057

    Article  CAS  Google Scholar 

  • Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J (2012) Targeted enrichment strategies for next-generation plant biology. Am J Bot 99:291–311

    Article  CAS  PubMed  Google Scholar 

  • Davey JW, Hohenloe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Genet 12:499–510

    Article  CAS  Google Scholar 

  • De Donato M, Peters SO, Mitchell SE, Hussain T, Imumorin IG (2013) Genotyping by sequencing (GBS): a novel, efficient and cost-effective method for cattle using next-generation sequencing. PLoS ONE 8:e62137

    Article  PubMed Central  PubMed  Google Scholar 

  • Deschamps S, la Rota M, Ratashak JP, Biddle P, Thureen D, Farmer A, Luck S, Beatty M, Nagasawa N, Michael L, Llaca V, Sakai H, May G, Lightner J, Campbell MA (2010) Rapid genome-wide single nucleotide polymorphism discovery in soybean and rice via deep resequencing of reduced representation libraries with the Illumina genome analyser. Plant Genome 3:53–68

    Article  CAS  Google Scholar 

  • Eckert AJ, Dyer RJ (2012) Defining the landscape of adaptive genetic diversity. Mol Ecol 21:2836–2838

    Article  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Qi S, Poland JA, Kawamoto K, Buckler E, Mitchell SE (2011) A robust, simple genotyping by sequencing (GbS) approach for high diversity species. PLoS ONE 6(5):e19379. doi:10.1371/journal.pone.0019379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garrison E, Marth G (2012) Haplotype-based variant detection from short-read sequencing. http://arxiv.org/abs/1207.3907

  • Gore MA, Wright MH, Ersoz ES, Bouffard P, Szekeres ES, Jarvie TP, Hurwitz BL, Narechania A, Harkins TT, Grills GS, Ware DH, Buckler ES (2009) Large-scale discovery of gene-enriched SNPs. Plant Genome 2:121–133

    Article  CAS  Google Scholar 

  • Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palm F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29(7):644–652

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hedley PE, Russell JR, Jorgensen L, Gordon S, Morris JA, Hackett CA, Cardle L, Brennan RM (2010) Candidate genes associated with bud dormancy release in blackcurrant (Ribes nigrum L.). BMC Genomics 10:202

    Google Scholar 

  • Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, Farmer AD, May GD, Cregan PB (2010) High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics 11(1):38

    Article  PubMed Central  PubMed  Google Scholar 

  • International Barley Genome Sequencing Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–717

    Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  Google Scholar 

  • Lanham PG, Brennan RM (1999) Genetic characterisation of gooseberry (Ribes subgenus Grossularia) germplasm using RAPD, ISSR and AFLP markers. J Hort Sci Biotechnol 74:361–366

    CAS  Google Scholar 

  • Lanham PG, Korycinska A, Brennan RM (2000) Genetic diversity within a secondary gene pool for Ribes nigrum L. revealed by RAPD and ISSR markers. J Hort Sci Biotechnol 75:371–375

    CAS  Google Scholar 

  • Payne RW, Murray DA, Harding SA, Baird D, Soutar D (2012) Introduction to GenStat for windows, 15th edn. VSN International, Hemel Hempstead

    Google Scholar 

  • Perez-de-Castro AM, Vilanova S, Canizares J, Pascual L, Blanca JM, Diez MJ, Prohens J, Pico B (2012) Application of genomic tools in plant breeding. Curr Genomics 13:179–195

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pfender WF, Saha MC, Johnson EA, Slabaugh MB (2011) Mapping with RAD (restriction-site associated DNA) markers to rapidly identify QTL for stem rust resistance in Lolium perenne. Theor Appl Genet 122:1467–1480

    Article  CAS  PubMed  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253. doi:10.1371/journal.pone.0032253

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell J, Bayer M, Booth C, Cardle L, Hackett C, Hedley PE, Jorgensen L, Brennan RM (2011) Identification, utilisation and mapping of novel transcriptome-based markers from blackcurrant (Ribes nigrum). BMC Plant Biol 11:147

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Sonah H, Bastien M, Iquira E, Tardivel A, Légare G, Boyle B, Normandeau É, Laroche J, Larose S, Jean M, Belzile F (2013) An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PLoS ONE 8(1):e54603. doi:10.1371/journal.pone.0054603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Truong HT, Ramos AM, Yalcin F, de Ruiter M, van der Poel HJA, Huvenaars KHJ, Hogers RCJ, van Enkevort LJG, Janssen A, van Orsouw NJ, van Eijk MJT (2012) Sequence-based genotyping for marker discovery and co-dominant scoring in germplasm and populations. PLoS ONE 7(5):e37565. doi:10.1371/journal.pone.0037565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Ooijen JW (2004) MapQTL® 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Van Ooijen JW (2006) JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen, Netherlands

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Meyer E, McKay JK, Matz MV (2012) 2b-RAD: a simple and flexible method for genome-wide genotyping. Nat Methods 9:808–810

    Article  CAS  PubMed  Google Scholar 

  • Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber C, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Support for this work from the Scottish Government’s Rural and Environment Science and Analytical Services Division (RESAS) and the EU FP7 EUBerry project is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rex Brennan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, J., Hackett, C., Hedley, P. et al. The use of genotyping by sequencing in blackcurrant (Ribes nigrum): developing high-resolution linkage maps in species without reference genome sequences. Mol Breeding 33, 835–849 (2014). https://doi.org/10.1007/s11032-013-9996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-013-9996-8

Keywords

Navigation