Skip to main content
Log in

Tagging and mapping candidate loci for vernalization and flower initiation in hexaploid oat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Flowering time is a decisive factor in the adaptation of oat. Some oat varieties require low temperatures for floral initiation, a process called vernalization. The objectives of this study were to clone, characterize, and map genes associated with vernalization in oat, and to identify markers linked to quantitative trait loci (QTL) that affect vernalization response. Genetic linkage maps were developed using Diversity Arrays Technology markers in recombinant inbred lines from the oat populations UFRGS 8 × UFRGS 930605 and UFRGS 881971 × Pc68/5*Starter. Flowering time and response to vernalization were characterized using field trials and controlled greenhouse experiments, and QTL were identified in two genetic regions on each of the two maps. PCR primer pairs anchored in the conserved coding regions of the Vrn1, Vrn2, and Vrn3 genes from wheat, barley, and Lolium were used to amplify and clone corresponding oat sequences. Cloned sequences corresponding to the targeted genes were recovered for both Vrn1 and Vrn3. A copy of the Vrn3 gene was mapped using a PCR amplicon, and an oat Vrn1 fragment was mapped by restriction fragment length polymorphism analysis. The location of the mapped Vrn1 locus was homologous to major QTL affecting flowering time in other work, and homoeologous to major QTL affecting response to vernalization in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Flowering time is often estimated based on observations of heading date in cereals because floral initiation happens within heads or panicles where it is difficult to observe. Although we recorded observations for heading, we use the term flowering hereafter for consistency with other literature in cereal crops.

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Beer SC, Siripoonwiwat W, O’Donoughue LS, Souza E, Matthews D, Sorrells ME (1997) Associations between molecular markers and quantitative traits in an oat germplasm pool: can we infer linkages? J Ag Genomics (formerly JQTL) vol. 3, article 1 http://wheat.pw.usda.gov/jag/papers97/paper197/indexp197.html. Published with permission from CAB Intl. Accessed 05 Dec 2011

  • Burrows VD (1986) Breeding oats for food and feed: conventional and new techniques and materials. In: Webster FH (eds) Oats: chemistry and technology. American Association of Cereal Chemists, Saint Paul, Minnesota, pp 13–46

  • Chouard P (1960) Variation and its relations to dormancy. Annu Rev Plant Physiol 11:191–238

    Article  CAS  Google Scholar 

  • Corbesier L, Vicent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:178–184

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G (1998) Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor Appl Genet 97:968–975

    Article  CAS  Google Scholar 

  • Dubcovsky J, Chen C, Yan L (2005) Molecular characterization of the allelic variation at the Vrn-H2 vernalization locus in barley. Mol Breed 15:395–407

    Article  CAS  Google Scholar 

  • Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006) Effect of photoperiod on the regulation of wheat vernalization genes Vrn1 and Vrn2. Plant Mol Biol 60:469–480

    Article  PubMed  CAS  Google Scholar 

  • Fu D, Szucs P, Yan L (2005) Large deletions within the first intron in Vrn-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  PubMed  CAS  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:94–98

    Google Scholar 

  • Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003) Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719–722

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Wood CC, Robertson M, Peacock WJ, Dennis ES (2006) The Arabidopsis FLC protein interacts directly in vivo with SOC1 and FT chromatin and is part of a high-molecular-weight protein complex. Plant J 46:183–192

    Article  PubMed  CAS  Google Scholar 

  • Holland JB, Moser HS, O’Donoughue LS, Lee M (1997) QTLs and epistasis associated with vernalization response in oat. Crop Sci 37:1306–1316

    Article  Google Scholar 

  • Holland JB, Portyanko VA, Hoffman DL, Lee M (2002) Genomic regions controlling vernalization and photoperiod responses in oat. Theor Appl Genet 105:113–126

    Article  PubMed  CAS  Google Scholar 

  • Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694–1696

    Article  PubMed  CAS  Google Scholar 

  • Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K (2002) Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:571–576

    Article  PubMed  CAS  Google Scholar 

  • Karsai I, Szucs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedõ Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Kleinhofs A, Kilian A, Saghai Maroof MA, Biyashev RM, Hayes PM, Chen FQ, Lapitan N, Fenwick A, Blake TK, Kanazin V, Ananiev E, Dahleen L, Kudrna D, Bollinger J, Knapp SJ, Liu B, Sorrells M, Heun M, Franckowiak JD, Hoffman D, Skadsen R, Steffenson BJ (1993) A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor App Genet 86:705–712

    Article  CAS  Google Scholar 

  • Locatelli AB, Federizzi LC, Milach SCK, Wight CP, Molnar SJ, Chapados JT, Tinker NA (2006) Loci affecting flowering time in oat under short-day conditions. Genome 49:1528–1538

    Article  PubMed  CAS  Google Scholar 

  • Locatelli AB, Federizzi LC, Milach SCK, McElroy AR (2008) Flowering time in oat: genotype characterization for photoperiod and vernalization response. Field Crops Res 106:242–247

    Article  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    PubMed  CAS  Google Scholar 

  • Michaels SD, Ditta G, Gustafson-Brown C, Pelaz S, Yanofsky M, Amasino RM (2003) AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J 33:867–874

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Oliver RE, Lazo GR, Lutz JD, Rubenfield MJ, Tinker NA, Wisniewski Morehead NH, Adhikary D, Jellen EN, Maughan PJ, Anderson JM, Brown Guedira GL, Chao S, Beattie AD, Carson ML, Rines HW, Obert DE, Bonman JM, Jackson EW (2011) Model SNP development for complex genomes based on hexaploid oat using high-throughput 454 sequencing technology. BMC Genomics 12:77

    Article  PubMed  CAS  Google Scholar 

  • Pal N, Sandhu JS, Domier LL, Kolb FL (2002) Development and characterization of microsatellite and RFLP-derived PCR markers in oat. Crop Sci 42:912–918

    Article  CAS  Google Scholar 

  • Portyanko VA, Hoffman DL, Lee M, Holland JB (2001) A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 44:249–265

    Article  PubMed  CAS  Google Scholar 

  • Portyanko VA, Chen G, Rines HW, Phillips RL, Leonard KJ, Ochocki GE, Stuthman DD (2005) Quantitative trait loci for partial resistance to crown rust, Puccinia coronata, in cultivated oat, Avena sativa L. Theor Appl Genet 111:313–324

    Article  PubMed  CAS  Google Scholar 

  • Preston JC, Kellogg EA (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174:421–437

    Article  PubMed  CAS  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general user and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP, Metzger J, Edwards JA, Peacock WJ, Dennis ES (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    PubMed  CAS  Google Scholar 

  • Siripoonwiwat W, O’Donoughue LS, Wesenberg D, Hoffman DL, Barbosa-Neto JF, Sorrells ME (1996) Chromosomal regions associated with quantitative traits in oat. J Ag Genomics (formerly JQTL) Vol. 2, article 3 http://wheat.pw.usda.gov/jag/papers96/paper396/indexp396.html Published with permission from CAB Intl. Accessed 05 Dec 2011

  • Sorrells ME, Simmons SR (1992) Influence of environment on the development and adaptation of oat. In: Marshal HG, Sorrells ME (eds) Oat science and technology. Madison, Wisconsin, pp 115–163

    Google Scholar 

  • Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007) Hd3a protein is a mobile flowering signal in rice. Science 316:1033–1036

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tinker NA (1999) Management of multiple molecular marker maps with multiple molecular marker map manager (Mmmmm!). J Agric Genomics 4. http://wheat.pw.usda.gov/jag/papers99/paper499/indexp499.html Published with permission from CAB Intl. Accessed 05 Dec 2011

  • Tinker NA, Mather DE (1995) MQTL: software for simplified composite interval mapping of QTL in multiple environments. J Quant Trait Loci (now J Agric Genomics) 1. http://wheat.pw.usda.gov/jag/papers95/paper295/indexp295.html. Published with permission from CAB Intl. Accessed 05 Dec 2011

  • Tinker NA, Mather DE, Rossnagel BG, Kasha KJ, Kleinhofs A, Hayes PM, Falk DE, Ferguson T, Shugar LP, Legge WG, Irvine RB, Choo TM, Briggs KG, Ullrich SE, Franckowiak JD, Blake TK, Graf RJ, Dofing SM, Saghai Maroof MA, Scoles GJ, Hoffman D, Dahleen LS, Kilian A, Chen F, Biyashev RM, Kudrna DA, Steffenson BJ (1996) Regions of the genome that affect agronomic performance in two-row barley. Crop Sci 36:1053–1062

    Article  Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Uszynska K, Wenzl P, Rines HW, Bjørnstad A, Jannink J-L, Anderson JM, Rossnagel BG, Stuthman DD, Sorrells ME, Jackson EW, Tuvesson S, Kolb FL, Olsson O, Federizzi LC, Carson ML, Ohm HH, Molnar SJ, Scoles GJ, Eckstein PE, Bonman JM, Ceplitis A, Langdon T (2009) New DArT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genet 10:39–61

    Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13104

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVrn2 responds to daylenght, whereas HvVrn1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • van Ooijen JW, Voorrips RE (2001) JoinMap. Software for the calculation of genetic linkage maps 3.0. http://www.kyazma.nl/index.php/mc.JoinMap. Accessed 12 Dec 2010

  • von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen TH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    Article  CAS  Google Scholar 

  • Wight CP, Tinker NA, Kianian SF, Sorrells ME, O’Donoughue LS, Hoffman DL, Groh S, Scoles GJ, Li CD, Webster FH, Phillips RL, Rines HW, Livingston SM, Armstrong KC, Fedak G, Molnar SJ (2003) A molecular marker map in ‘Kanota’ × ‘Ogle’ hexaploid oat (Avena spp.) enhanced by additional markers and a robust framework. Genome 46:28–47

    Article  PubMed  CAS  Google Scholar 

  • Wight CP, Bergeron D, Tinker NA (2006) Oatgenes: a comprehensive database of oat markers and QTLs. Proc. 2006 American Oat Workers’ Conference, July 23-26, Wilmington, NC, USA. http://wheat.pw.usda.gov/ggpages/oatnewsletter/v50/AOWC/Oat_book5.pdf. Accessed 05 Dec 2011

  • Wight CP, Yan W, Mitchell Fetch J, Deyl J, Tinker NA (2010) A set of new simple sequence repeat and avenin DNA markers suitable for mapping and fingerprinting studies in oat (Avena spp.). Crop Sci 50:1207–1218

    Article  CAS  Google Scholar 

  • Xue WY, Xing YZ, Weng XY, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Hahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene Vrn1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat Vrn2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Dubcovsky J (2006) The wheat and barley vernalization gene Vrn3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  PubMed  CAS  Google Scholar 

  • Zadoks JC, Chang TT, Zonzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Andrzej Kilian for providing customized pre-commercial services for the oat DArT marker assay used in this work, and for his excellent advice in interpretation of results. We thank Steve Harrison and Paul Murphy for useful advice on winter oats and vernalization conditions. We thank Julie Chapados for the sequencing support and Dr. Weikai Yan and Annick Gauthier for assistance with planning and execution of fieldwork. A portion of this research was made possible by generous support from Quaker Oats Company (USA), Quaker Tropicana Gatorade (Canada), and the Agriculture and Agri-Food Canada Matching Investment Initiative. The authors also thank the Brazilian Council of Scientific and Technological Development (CNPq) for the financial support of this research and for the scholarship provided for the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Tinker.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nava, I.C., Wight, C.P., Pacheco, M.T. et al. Tagging and mapping candidate loci for vernalization and flower initiation in hexaploid oat. Mol Breeding 30, 1295–1312 (2012). https://doi.org/10.1007/s11032-012-9715-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-012-9715-x

Keywords

Navigation