Skip to main content
Log in

LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

To deploy a high-throughput genotyping platform in germplasm management, we designed and tested a custom OPA (Oligo Pool All), LSGermOPA, for assessing the genetic diversity and population structure of the USDA cultivated lettuce (Lactuca sativa L.) germplasm collection using Illumina’s GoldenGate assay. This OPA contains 384 EST (expressed sequence tag)-derived SNP (single nucleotide polymorphism) markers selected from a large set of SNP markers experimentally validated and mapped by the Compositae Genome Project. Used for genotyping were DNA samples prepared from bulked leaves of five randomly-selected seedlings from each of 380 lettuce accessions. High-quality genotype data were obtained from 354 of the 384 SNPs. The reproducibility of automatic genotype calls was 99.8% as calculated from the four pairs of duplicated DNA samples in the assay. An unexpectedly high percentage of heterozygous genotypes at the polymorphic loci for most accessions indicated a high level of heterogeneity within accessions. Only 148 homogenous accessions, collectively comprising all five horticultural types, were used in subsequent analyses to demonstrate the usefulness of LSGermOPA. The results of phylogenetic relationship, population structure and genetic differentiation analyses were consistent with previous reports using other marker systems. This suggests that LSGermOPA is capable of revealing sufficient levels of polymorphism among lettuce cultivars and is appropriate for rapid assessment of genetic diversity and population structure in the lettuce germplasm collection. Challenges and strategies for effective genotyping and managing lettuce germplasm are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C (2005) Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 1:e60

    Article  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    Google Scholar 

  • Boukema IW, Hazekamp T, Van Hintum TJL (1990) The CGN collection review; The CGN lettuce collection. Center for Genetic Resources, Wageningen, pp 2–5

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  PubMed  CAS  Google Scholar 

  • de Vries IM (1997) Origin and domestication of Lactuca sativa L. Genet Resour Crop Evol 44:165–174

    Article  Google Scholar 

  • de Vries IM, van Raamsdonk LWD (1994) Numerical morphological analysis of lettuce cultivars and species (Lactuca sect. Lactuca, Asteraceae). Plant Syst Evol 193:125–141

    Article  Google Scholar 

  • Dice LR (1945) Measures of the amount of ecologic association between species. Ecology 26:297–302

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (2005) PHYLIP (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  • Hill M, Witsenboer H, Zabeau M, Vos P, Kesseli R, Michelmore R (1996) PCR-based fingerprinting using AFLPs as a tool for studying genetic relationships in Lactuca spp. Theor Appl Genet 93:1202–1210

    Article  CAS  Google Scholar 

  • Hu J, Ochoa OE, Truco MJ, Vick BA (2005) Application of the TRAP technique to lettuce (Lactuca sativa L.) genotyping. Euphytica 144:225–235

    Article  CAS  Google Scholar 

  • Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945–952

    Article  PubMed  CAS  Google Scholar 

  • Hyten DL, Choi I-Y, Song Q, Specht JE, Carter TE, Shoemaker RC, Hwang E-Y, Matukumalli LK, Cregan PB (2010) A high density integrated genetic linkage map of soybean and the development of a 1, 536 Universal Soy Linkage Panel for QTL mapping. Crop Sci 50:960–968

    Article  CAS  Google Scholar 

  • International HapMapConsortium (2007) A second generation human haplotype map of over 3.1 million SNPs. Nature 449:851–861

    Article  Google Scholar 

  • Johnson RC, Kisha TJ, Evans MA (2007) Characterizing safflower germplasm with AFLP molecular markers. Crop Sci 47:1728–1736

    Article  CAS  Google Scholar 

  • Kacser H, Burns JA (1981) The molecular basis of dominance. Genetics 97:639

    PubMed  CAS  Google Scholar 

  • Kesseli RV, Michelmore RW (1986) Genetic variation and phylogenies detected from isozyme markers in species of Lactuca. J Hered 77:324

    CAS  Google Scholar 

  • Kesseli R, Ochoa O, Michelmore R (1991) Variation at RFLP loci in Lactuca spp. and origin of cultivated lettuce (L. sativa). Genome 34:430–436

    Article  Google Scholar 

  • Kimmons J, Gillespie C, Seymour J, Serdula M, Blanck HM (2009) Fruit and vegetable intake among adolescents and adults in the United States: percentage meeting individualized recommendations. Medscape J Med 11:26

    PubMed  Google Scholar 

  • Krawczak M (1999) Informativity assessment for biallelic single nucleotide polymorphisms. Electrophoresis 20:1676–1681

    Article  PubMed  CAS  Google Scholar 

  • Křístková E, Doležalová I, Lebeda A, Vinter V, Novotna A (2008) Description of morphological characters of lettuce (Lactuca sativa L.) genetic resources. Hort Sci 35:3–129

    Google Scholar 

  • Lindqvist K (1960) On the origin of cultivated lettuce. Hereditas 46:319–350

    Article  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128

    Article  PubMed  CAS  Google Scholar 

  • Ma KH, Kim NS, Lee GA, Lee SY, Lee JK, Yi JY, Park YJ, Kim TS, Gwag JG, Kwon SJ (2009) Development of SSR markers for studies of diversity in the genus Fagopyrum. Theor Appl Genet 119:1247–1254

    Article  PubMed  CAS  Google Scholar 

  • Mackill DJ (1995) Classifying japonica rice cultivars with RAPD markers. Crop Sci 35:889

    Article  CAS  Google Scholar 

  • Messmer MM, Melchinger AE, Lee M, Woodman WL, Lee EA, Lamkey KR (1991) Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize population: comparison of allozyme and RFLP data. Theor Appl Genet 83:97–107

    Article  Google Scholar 

  • Nelson RL (2011) Managing self-pollinated germplasm collections to maximize utilization. Plant Genet Res 9(1):123–133

    Article  Google Scholar 

  • Oliphant A, Barker DL, Stuelpnagel JR, Chee MS (2002) BeadArray technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 32:S56–S61

    Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    PubMed  CAS  Google Scholar 

  • Peakall ROD, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945

    PubMed  CAS  Google Scholar 

  • Rodenburg CM, Basse H (1960) Varieties of lettuce: an international monograph. Instituut voor de Veredeling van Tuinbouwgewassen

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, Stein N, Varshney RK, Marshall DF (2006) Recent history of artificial outcrossing facilitates whole-genome association mapping in elite inbred crop varieties. Proc Natl Acad Sci USA 103:18656

    Article  PubMed  CAS  Google Scholar 

  • Simko I (2009) Development of EST-SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered 100:256

    Article  PubMed  CAS  Google Scholar 

  • Simko I, Hu J (2008) Populations structure in cultivated lettuce (Lactuca sativa L.) and its impact on assocation mapping. J Am Soc Hort Sci 133:61–68

    Google Scholar 

  • Simko I, Pechenick DA, McHale LK, Truco MJ, Ochoa OE, Michelmore RW, Scheffler BE (2009) Association mapping and marker-assisted selection of the lettuce dieback resistance gene Tvr 1. BMC Plant Biol 9:135

    Article  PubMed  Google Scholar 

  • Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJW, Kesseli RV, Lindhout P (2007) A high-density integrated genetic linkage map of lettuce (Lactuca spp.). Theor Appl Genet 115:735–746

    Article  PubMed  CAS  Google Scholar 

  • Tsuchihashi Z, Dracopoli NC (2002) Progress in high throughput SNP genotyping methods. Pharmacogenomics J 2:103–110

    Article  PubMed  CAS  Google Scholar 

  • USDA (2010) Crop values 2009 summary. pp 13

  • van Treuren R, van Hintum TJL (2001) Identification of intra-accession genetic diversity in selfing crops using AFLP markers: implications for collection management. Genet Res Crop Evol 48:287–295

    Article  Google Scholar 

  • van Treuren R, van Hintum TJL (2009) Comparison of anonymous and targeted molecular markers for the estimation of genetic diversity in ex situ conserved Lactuca. Theor Appl Genet 119:1265–1279

    Article  PubMed  Google Scholar 

  • Watt WB (1994) Allozymes in evolutionary genetics: self-imposed burden or extraordinary tool? Genetics 136:11

    PubMed  CAS  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: Methods for discrete population genetic data. Sinauer Assoc, Sunderland

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Witsenboer H, Michelmore RW, Vogel J (1997) Identification, genetic localization and allelic diversity of selectively amplified microsatellite polymorphic loci in lettuce and wild relatives (Lactuca spp.). Genome 40:923–936

    Article  PubMed  CAS  Google Scholar 

  • Yan JB, Shah T, Warburton M, Buckler ES, McMullen MD, Crouch J (2009) Genetic characterization of a global maize collection using SNP markers. PLoS ONE 4:e8451

    Article  PubMed  Google Scholar 

  • Yan J, Yang X, Shah T, Sanchez-Villeda H, Li J, Warburton M, Zhou Y, Crouch JH, Xu Y (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    Article  CAS  Google Scholar 

  • Zhao K, Aranzana MJ, Kim S, Lister C, Shindo C, Tang C, Toomajian C, Zheng H, Dean C, Marjoram P (2007) An Arabidopsis example of association mapping in structured samples. PLoS Genet 3:e4

    Article  PubMed  Google Scholar 

  • Zhao K, Wright M, Kimball J, Eizenga G, McClung A, Kovach M, Tyagi W, Ali ML, Tung CW, Reynolds A (2010) Genomic diversity and introgression in O. sativa reveal the impact of domestication and breeding on the rice genome. PloS One 5:e10780

Download references

Acknowledgments

We greatly appreciate the generosity of Richard Michelmore for allowing us to access and use the unpublished data in selecting SNPs for LSGermOPA, and two anonymous reviewers for helpful and constructive comments on the manuscript. We thank Barbara Hellier, Pavelka, Maria, and Corey Whale for technical assistance in the greenhouse and thank Charles Nicolet and Vanessa Rashbrook for performing the SNP genotyping and helping us in using the GenomeStudio software. This research was supported by USDA-ARS CRIS 5438-21000-026-00D and by the Hatch Act funds to Multistate Research Project W006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinguo Hu.

Additional information

Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLS 151 kb)

Supplementary material 2 (XLS 124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwon, SJ., Truco, MJ. & Hu, J. LSGermOPA, a custom OPA of 384 EST-derived SNPs for high-throughput lettuce (Lactuca sativa L.) germplasm fingerprinting. Mol Breeding 29, 887–901 (2012). https://doi.org/10.1007/s11032-011-9623-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9623-5

Keywords

Navigation