Skip to main content
Log in

Genomic characterization of Oryza species-specific CACTA-like transposon element and its application for genomic fingerprinting of rice varieties

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

A repeated DNA fragment (pKRD) was isolated from the genomic library of weedy rice in Korea. The pKRD showed significant homology to Em/Spm CACTA-like transposon in whole genome sequences of rice released in the Blast rice sequence database of NCBI and was closely related to the TNP2 transposase group, including a TNP-like transposable element of rice. A Southern hybridization experiment demonstrated that the pKRD sequence is unique to the Oryza genome. The 126 sequences homologous to pKRD were evenly distributed in all 12 different chromosomes in rice genomes with multiple copy numbers. Different copy numbers ranging from 1,500 to 4,500 corresponding to rice species were detected by slot blot hybridization. In a DNA fingerprinting experiment, a pKRD probe was assessed to be the potential molecular marker for studying evolution and divergence, biodiversity and phylogenic analysis of rice species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bercury SD, Panavas T, Irenze K, Walker EL (2001) Molecular analysis of the Doppia transposable element of maize. Plant Mol Biol 47(3):341–351

    Article  PubMed  CAS  Google Scholar 

  • Deumling B (1991) Sequence arrangement of a highly methylated satellite DNA of a plant, Scilla: a tandemly repeated inverted repeat. Proc Natl Acad Sci USA 78:338–342

    Article  Google Scholar 

  • Dhar MS, Dabak MM, Gupta VS, Ranjekar PK (1988) Organization and properties of repeated DNA sequences in rice genome. Plant Sci 55:43–52

    Article  CAS  Google Scholar 

  • Dong H, Dong J, He Z, Li D (1999) A rice transposon protein-like cDNA is induced by Magnaporthe grisea (Accession No. AF121139). Plant Physiol 119:1149

    Google Scholar 

  • Flavell RB (1982) Sequencing amplification, deletion, and rearrangement-major source of variation during species divergence. In: Dover GA, Flavell RB (eds) Genome evolution. Academic Press, London, pp 301–323

    Google Scholar 

  • Gierl A (1996) The En/Spm transposable element of maize. Curr Topics Microbiol Immunol 204:145–159

    CAS  Google Scholar 

  • Grellet F, Delcasso TD, Panabieves F, Delseny M (1986) Organization and evolution of a higher plant alphoid-like satellite DNA sequence. J Mol Biol 187:495–503

    Article  PubMed  CAS  Google Scholar 

  • Han CG, Flank MJ, Ohtsubo H, Ohtsubo E (2000) New transposable elements identified as insertions in rice transposon Tnr1. Genes Genet Syst 75:69–77

    Article  PubMed  CAS  Google Scholar 

  • He ZH, Dong HT, Dong JX, Li DB, Ronald PC (2000) The rice Rim2 transcript accumulates in response to Magnaporthe grisea and its predicted protein product shares similarity with TNP2-like proteins encoded by CACTA transposons. Mol Gen Genet 264:2–10

    Article  PubMed  CAS  Google Scholar 

  • Hiroka M (1984) Wild plants and domestication. In: Tsunoda S, Takahashi N (eds) Biology of rice. Japan Scientific Press, Tokyo, pp 3–30

    Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable minisatellite regions in human DNA. Nature (London) 314:67–73

    Article  CAS  Google Scholar 

  • Jiang N, Bao ZR, Zhang XY, Hirochika H, Eddy SR, McCouch S, Wessler S (2003) An active DNA transposon family in rice. Nature 421:163–167

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Rev Genet 33:479–532

    Article  PubMed  CAS  Google Scholar 

  • Kunze R, Weil CF (2002) The hAT and CACTA superfamilies of plant transposons. In: Craig NL, Craigie R, Gellert M, Lambowitz AM (eds) Mobile DNA II. ASM Press, Washington, pp 565–609

    Google Scholar 

  • Kwon SJ, Park KC, Kim JH, Lee JK, Kim N-S (2005) Rim2/Hipa CACTA transposon display: a new genetic marker technique in Oryza species. BMC Genetics 6:15 doi:10.1186/1471-2156-6-15

    Article  PubMed  Google Scholar 

  • Li JC, Lee DS, Zhi PS, Suh HS, Lu BR (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Annals of Botany 93:1–7

    Article  Google Scholar 

  • McClintock B (1984) The significance of responses of the genome to challenge. Science 226:792–801

    Article  PubMed  CAS  Google Scholar 

  • McDonald JF (1995) Transposable elements: possible catalysts of organismic evolution. Trends Ecol Evol 10:123–126

    Article  Google Scholar 

  • Motohashi R, Ohtsubo E, Ohtsubo H (1996) Identification of Tnr3, a Suppressor Mutator/Enhancer-like transposable element from rice. Mol Gen Genet 250:148–152

    PubMed  CAS  Google Scholar 

  • Nacken WKF, Piotrowiak R, Saedler H, Sommer H (1991) The transposable element Tam1 from Antirrhinum majus shows structural homology to the maize transposon En/Spm and has no sequence specificity of insertion. Mol Gen Genet 228:201–208

    Article  PubMed  CAS  Google Scholar 

  • Ohmido N, Kijima K, Akiyama Y, de Jong JH, Fukui K (2000) Quantification of total genomic DNA and selected repetitive sequences reveals concurrent changes in different DNA families in indica and japonica rice. Mol Gen Genet 263(3):388–394

    Article  PubMed  CAS  Google Scholar 

  • Ozeki Y, Davies E, Takeda J (1997) Somatic variation during longterm subculturing of plant cells caused by insertion of a transposable element in a phenylalanine ammonia-lyase (PAL) gene. Mol Gen Genet 254:407–416

    Article  PubMed  CAS  Google Scholar 

  • Panaud O, Vitte C, Hivert J, Muzlak S, Talag J, Brar D, Sarr A (2002) Characterization of transposable elements in the genome of rice (Oryza sativa L.) using Representational Difference Analysis (RDA). Mol Genet Genome 268:113–121

    Article  CAS  Google Scholar 

  • Park KC, Lee JK, Kim NH, Shin YB, Lee JH, Kim NS (2003) Genetic variation in Oryza species detected by MITE-AFLP. Gene Genet Syst 78:235–243

    Article  CAS  Google Scholar 

  • Pereira A, Cuyoers H, Gierl A, Schwarz-Sommer Z, Saedler H (1986) Molecular analysis of the En/Spm element system of Zea mays. EMBO J 5:835–841

    PubMed  CAS  Google Scholar 

  • Rohlf FJ (2000) NTSYS-pc: Numerical taxonomy and multivariate analysis system. Version 2.1. Exeter Software, Setauket, NY

    Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoot RA (eds) Plant Molecular Biology Manual. Kluwer Academic Publisher, Boston, MA, pp A6: 1–10

  • Shao Q, Yi H, Chen Z (1986) New findings concerning the origin of rice. In: Ricegenetics. Proc. Int. Rice Genet. Symp. Island, Manila, pp 53–58

  • Snowden KC, Napoli CA (1998) Psl: a novel Spm-like transposable element from Petunia hybrid. Plant J 14:43–54

    Article  PubMed  CAS  Google Scholar 

  • Suh HS, Park SZ, Heu MH (1992) Collection and evaluation of Korean red rices, 1. Regional distribution and seed characteristics. Korean J Crop Sci 37:425–430

    Google Scholar 

  • Tarchini R, Biddle P, Wineland R, Tingery S, Rafalski A (2000) The complete sequence of 340 kb of DNA around the rice AdhI-Adh2 region reveals interrupted colinearity with maize chromosome 4. Plant Cell 12:381–391

    Article  PubMed  CAS  Google Scholar 

  • Tomita RN, Suzuki G, Yoshida K, Yano Y, Tsuchiya T, Kakeda K, Mukai Y, Kowyama Y (2004) Molecular characterization of a 313-kb genomic region containing the self-incompatibility locus of Ipomoea trifida, a diploid relative of sweet potato. Breed Sci 54:165–175

    Article  CAS  Google Scholar 

  • Wang GD, Tian PF, Cheng ZK, Wu G, Jiang JM, Li DB, Li Q, He ZH (2003) Genomic characterization of Rim2/Hipa elements reveals a CACTA-like transposon superfamily with unique features in the rice genome. Mol Gen Genomics 270:234–242

    Article  CAS  Google Scholar 

  • Wessler SR, Bureau T, White S (1995) LTR retrotransposons and MITEs: important players in the evolution of plant genomes. Curr Opin Genet Dev 5:814–821

    Article  PubMed  CAS  Google Scholar 

  • Zhijian T (2000) Molecular and evolutionary analysis of two divergent subfamilies of a novel miniature inverted repeat transposable element in yellow fever mosquito, Aedes aegypti. Mol Biol Evol 17:1313–1325

    Google Scholar 

  • Zhijian T (2001) Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA 98:1699–1704

    Article  Google Scholar 

  • Zhou Z, Gustafson JP (1995) Genetic variation detected by DNA fingerprinting with a rice minisatellite probe in Oryza sativa L. Theor Appl Genet 91:481–488

    Article  CAS  Google Scholar 

  • Zimmerman PA, Langunnasch N, Cullis CA (1989) Polymorphic regions in plant genomes detected by an M13 probe. Genome 32:824–828

    CAS  Google Scholar 

Download references

Acknowledgement

We thank Dr. M.Y. Eun of the National Institute of Agricultural Biotechnology, RDA, Suwon, Korea, for providing rice materials and giving us critical advice for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Wan Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, HW., Kang, KK. Genomic characterization of Oryza species-specific CACTA-like transposon element and its application for genomic fingerprinting of rice varieties. Mol Breeding 21, 283–292 (2008). https://doi.org/10.1007/s11032-007-9128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-007-9128-4

Keywords

Navigation