Skip to main content
Log in

Distribution of β-amylase I haplotypes among European cultivated barleys

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

The barley β-amylase I (Bmy1) locus encodes a starch breakdown enzyme whose kinetic properties and thermostability are critical during malt production. Studies of allelic variation at the Bmy1 locus have shown that the encoded enzyme can be commonly found in at least three distinct thermostability classes and demonstrated the nucleotide sequence variations responsible for such phenotypic differences. In order to explore the extent of sequence diversity at the Bmy1 locus in cultivated European barley, 464 varieties representing a cross-section of popular varieties grown in western Europe over the past 60 years, were genotyped for three single nucleotide polymorphisms chosen to tag the four common alleles found in the collection. One of these haplotypes, which has not been explicitly recognised in the literature as a distinct allele, was found in 95% of winter varieties in the sample. When release dates of the varieties were considered, the lowest thermostability allele (Bmy1-Sd2L) appeared to decrease in abundance over time, while the highest thermostability allele (Bmy1-Sd2H) was the rarest allele at 5.4% of the sample and was virtually confined to two-row spring varieties. Pedigree analysis was used to track transmission of particular alleles over time and highlighted issues of genetic stratification of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Backes G, Hatz B, Jahoor A, Fischbeck G (2003) RFLP diversity within and between major groups of barley in Europe. Plant Breed 122:291–299

    Article  CAS  Google Scholar 

  • Clark SE, Hayes PM, Henson CA (2003) Effects of single nucleotide polymorphisms in β-amylase 1 alleles from barley on functional properties of the enzymes. Plant Physiol Biochem 41:798–804

    Article  CAS  Google Scholar 

  • Danyluk J, Kane NA, Breton G, Limin AE, Fowler DB, Sarhan F (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Chen CL, Yan LL (2005) Molecular characterization of the allelic variation at the VRN-H2 vernalization locus in barley. Mol Breed 15:395–407

    Article  CAS  Google Scholar 

  • Eglington JK, Evans DE (1996) Identification of the β-amylase isoelectric focusing band pattern in barley (Hordeum vulgare L.). Barley Genet Newsl 27:8–12

    Google Scholar 

  • Eglington JK, Langridge P, Evans DE (1998) Thermostability variation in alleles of barley β-amylase. J Cereal Sci 28:301–309

    Article  Google Scholar 

  • Erkkila MJ (1999) Intron-III specific markers for screening of β-amylase alleles in barley cultivars. Plant Mol Biol Rep 17:139–147

    Article  CAS  Google Scholar 

  • Erkkila MJ, Ahokas H (2001) Special barley beta-amylase allele in a Finnish landrace line HA52 with high grain enzyme activity. Hereditas 134:91–95

    Article  PubMed  CAS  Google Scholar 

  • Erkkila MJ, Leah R, Ahokas H, Cameron-Mills V (1998) Allele-dependent barley grain β-amylase activity. Plant Physiol 117:679–685

    Article  PubMed  CAS  Google Scholar 

  • Evans DE, Lance RCM, Eglinton JK, Lougue SJ, Barr AR (1995) The influence of β-amylase isoform pattern on β-amylase activity in barley and malt. In: Abstracts of the 45th Australian Cer Chem Conf, pp 357–364

  • Fischbeck G (1992) Barley cultivar development in Europe. Success in the past and possible changes in the future In: Munk L (ed) Proceeding of 6th International Barley Genetics vol II. Munksgaard Int.Publ.Ltd Copenhagen, 887 pp

  • Forster BP, Thompson DM, Watters J, Powell W (1991) Water-soluble proteins of mature barley endosperm: genetic control, polymorphism, and linkage with β-amylase and spring/winter habit. Theor Appl Genet 81:787–792

    Article  CAS  Google Scholar 

  • Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmussen D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects, and evironmental interaction in a sample of North American barley germplasm. Theor Appl Genet 87:392–401

    Article  Google Scholar 

  • Igartua E, Casas AM, Ciudad F, Montoya JL, Romagosa II (1999) RFLP markers associated with major genes controlling heading date evaluated in a barley germ plasm pool. Heredity 83:551–559

    Article  PubMed  Google Scholar 

  • Kaneko T, Kihara M, Ito K (2000) Genetic analysis of β-amylase thermostability to develop a DNA marker for malt fermentability improvement in barley, Hordeum vulgare. Plant Breed 119:197–201

    Article  CAS  Google Scholar 

  • Karsai I, Szucs P, Meszaros K, Filichkina T, Hayes PM, Skinner JS, Lang L, Bedo Z (2005) The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor Appl Genet 110:1458–1466

    Article  PubMed  CAS  Google Scholar 

  • Kihara M, Kaneko T, Ito K, Aida Y, Takeda K (1999) Geographical variation of β-amylase thermostability among varieties of barley (Hordeum vulgare) and β-amylase deficiency. Plant Breed 118:453–455

    Article  CAS  Google Scholar 

  • Kreis M, Williamson M, Buxton B, Pywell J, Hejgaard J, Svendsen I (1987) Primary structure and differential expression of β-amylase in normal and mutant barleys. Eur J Biochem 169:517–525

    Article  PubMed  CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezzant JH, Snape JW (1995) Genome mapping of five major genes and eight quantitative loci controlling flowering time in a winter-spring barley cross. Genome 38:575–585

    CAS  PubMed  Google Scholar 

  • Li CD, Langridge P, Zhang XQ, Eckstein PE, Rossnagel BG, Lance RCM, Lefol EB, Lu MY, Harvey BL, Scoles GJ (2002) Mapping of Barley beta-amylase alleles in which an amino-acid substitution determines beta-amylase isoenzyme type and the level of free beta-amylase. J Cereal Sci 35:39–50

    Article  CAS  Google Scholar 

  • Lund B, Ortiz R, Skovgaard IM, Waugh R, Andersen SB (2003) Analysis of potential duplicates in barley gene bank collections using re-sampling of microsatellite data. Theor Appl Genet 106:1129–1138

    PubMed  CAS  Google Scholar 

  • Ma Y, Stewart DC, Eglinton JK, Logue SJ, Langridge P, Evans DE (2000a) Comparative enzyme kinetics of␣two allelic forms of barley (Hordeum vulgare L.) β-amylase. J Cereal Sci 31:335–344

    Article  CAS  Google Scholar 

  • Ma YF, Eglinton JK, Evans DE, Logue SJ, Langridge P (2000b) Removal of the four C-terminal glycine-rich repeats enhances the thermostability and substrate binding affinity of barley β-amylase. Biochemistry 39:13350–13355

    Article  PubMed  CAS  Google Scholar 

  • Ma YF, Evans DE, Logue SJ, Langridge P (2001) Mutations of barley β-amylase that improve substrate-binding affinity and thermostability. Mol Genet Genomics 266:345–352

    Article  PubMed  CAS  Google Scholar 

  • Malysheva L, Ganal MW, Roder MS (2004) Evaluation of cultivated barley Hordeum vulgare germplasm for the presence of thermostable alleles of β-amylase. Plant Breed 123:128–131

    Article  CAS  Google Scholar 

  • Melchinger AE, Graner A, Singh M, Messmer M (1994) Relationships among European Barley Germplasm: I. genetic diversity among winter and spring cultivars revealed by RFLPs. Crop Sci 34:1191–1199

    Article  Google Scholar 

  • Pan A, Hayes PM, Chen F, Blake T, Wright S, Karsai I, Bedo Z (1994) Genetic analysis of the components of winter hardiness in barley. Theor Appl Genet 89:900–910

    Article  CAS  Google Scholar 

  • Paris M, Jones MGK, Eglinton JK (2002) Genotyping single nucleotide polymorphisms for selection of barley β-amylase alleles. Plant Mol Biol Rep 20:149–159

    CAS  Google Scholar 

  • Plarre W, Hoffmann W (1963) The development of barley growing and barley breeding in Europe. In: Broekhuizen S (ed) 1st International Barley Genetics Symposium NIBEM and NGC. Wageningen, pp 7–59

  • Polakova K, Laurie D, Vaculova K, Ovesna J (2003) Characterization of β-amylase alleles in 79 barley varieties with Pyrosequencing. Plant Mol Biol Rep 21:439–447

    CAS  Google Scholar 

  • Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. Curr Opin Plant Biol 5:94–100

    Article  PubMed  CAS  Google Scholar 

  • Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  PubMed  CAS  Google Scholar 

  • Russell J, Fuller J, Young G, Thomas B, Taramino G, Macaulay M, Waugh R, Powell W (1997) Discriminating between barley genotypes using microsatellite markers. Genome 40:442–450

    PubMed  CAS  Google Scholar 

  • Russell JR, Ellis RP, Thomas WTB, Waugh R, Provan J, Booth A, Fuller J, Lawrence P, Young G, Powell W (2000) A retrospective analysis of spring barley germplasm development from ‘foundation genotypes’ to currently successful cultivars. Mol Breed 6:553–568

    Article  Google Scholar 

  • Sjakste TG, Rashal I, Roder MS (2003) Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theor Appl Genet 106:539–549

    PubMed  CAS  Google Scholar 

  • Sjakste TG, Roder MS (2004) Distribution and inheritance of beta-amylase alleles in north European barley varieties. Hereditas 141:39–45

    Article  PubMed  Google Scholar 

  • Taketa S, Kikuchi S, Awayama T, Yamamoto S, Ichii M, Kawasaki S (2004) Monophyletic origin of naked barley inferred from molecular analyses of a marker closely linked to the naked caryopsis gene (nud). Theor Appl Genet 108:1236–1246

    Google Scholar 

  • Tanno K, Taketa S, Takeda K, Komatsuda T (2002) A DNA marker closely linked to the vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theor Appl Genet 104:54–60

    Article  PubMed  CAS  Google Scholar 

  • Thacker SP, Ramamurthy V, Kothari RM (1992) Characterisation of barley β-amylase for application in maltose production. Starch 44:339–341

    CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Trevaskis B, Bagnall DJ, Ellis MH, Peacock WJ, Dennis ES (2003) MADS box genes control vernalization-induced flowering in cereals. Proc Natl Acad Sci USA 100:13099–13104

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

  • Yoshigi N, Okada Y, Sahara H, Koshino S (1994a) Expression in Escherichia coli of cDNA encoding barley β-amylase and properties of recombinant β-amylase. Biosci Biotechnol Biochem 58:1080–1086

    PubMed  CAS  Google Scholar 

  • Yoshigi N, Okada Y, Sahara H, Koshino S (1994b) PCR cloning and sequencing of the β-amylase cDNA from barley. J Biochem 115:47–51

    PubMed  CAS  Google Scholar 

  • Yoshigi N, OkadaY, Sahara H, Tamaki T (1995) A structural gene encoding beta-amylase of barley. Biosci Biotechnol Biochem 59:1991–1993

    Article  PubMed  CAS  Google Scholar 

  • von Zitzewitz J, Szucs P, Dubcovsky J, Yan L, Francia E, Pecchioni N, Casas A, Chen TH, Hayes PM, Skinner JS (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financed by the EU FP5 project GEDIFLUX QLRT-2000-00934. We thank Mike Ambrose (JIC, Norwich), Bob Jarman (NIAB, Cambridge), Alan Schulman (University of Helsinki), Marion Roeder (IPK, Gatersleben) and Ernesto Igartua (Spain) for supplying seed of barley accessions for this study and Alan Schulman for providing information on the pedigrees of Finnish varieties.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donal M. O’Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiapparino, E., Donini, P., Reeves, J. et al. Distribution of β-amylase I haplotypes among European cultivated barleys. Mol Breeding 18, 341–354 (2006). https://doi.org/10.1007/s11032-006-9035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9035-0

Keywords

Navigation