Skip to main content
Log in

Breeding high-stearic oilseed rape (Brassica napus) with high- and low-erucic background using optimised promoter-gene constructs

  • Research Article
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Seed lipids of oilseed rape (Brassica napus) usually contain small proportions (<3%) of stearic acid. The objective of this study was to increase the content of stearic fatty␣acid in rapeseed oil. An antisense down-regulation of the endogenous stearoyl-ACP desaturase (SAD) catalysing the reaction step from stearic to oleic acid in two different genetic backgrounds was studied. The result of down-regulation of the SAD yielded an about 10-fold increase of stearic acid from 3.7% up to 32% in single seeds of transgenic low-erucic acid rapeseed (LEAR), while high-erucic acid rapeseed (HEAR) showed a 4-fold increase of C18:0 from 1% up to 4%. It could be shown in pooled T2 seed material of LEAR rapeseed, that the stearic acid content is highly correlated with the down-regulation of SAD as indicated by the␣stearate desaturation proportion (SDP). The importance of the promoter strength for the alteration of a trait was confirmed in this study as no change in the fatty acid composition of transgenic plants was achieved with gene constructs controlled by the weak FatB4 seed-specific promoter from Cuphea lanceolata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe TJ (1998). A rapeseed FAE1 gene is linked to the E1 locus associated with variation in the content of erucic acid. Theor Appl Genet 96:177–186

    Article  CAS  Google Scholar 

  • De Block M, De Brouwer D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in transgenic plants. Plant Physiol 91:694–701

    Article  PubMed  CAS  Google Scholar 

  • Domergue F, Chevalier S, Santarelli X, Cassagne C, Lessire R, (1999) Evidence that oleoyl-CoA and ATP-dependent elongations coexist in rapeseed (Brassica napus L.). Eur J Biochem 263:464–470

    Article  PubMed  CAS  Google Scholar 

  • Dower WJ, Miller JF, Ragsdale CW (1988) High efficiency transformation of E. coli by high voltage electroporation. Nucl Acids Res 16:6127–6145

    PubMed  CAS  Google Scholar 

  • Downey RK, Taylor DC (1996) Diversification of canola/rapeseed fatty acid supply for the year 2000. Oleagineux Corps Gras Lipids 3:9–13

    CAS  Google Scholar 

  • Doyle JF, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Drexler HS, Spiekermann P, Meyer A, Domergue F, Zank T, Sperling P, Abbadi A, Heinz E (2003a) Metabolic engineering of fatty acids for breeding of new oilseed crops: stratagies, problems and first results. J Plant Physiol 8:779–802

    Article  Google Scholar 

  • Drexler HS, Scheffler JA, Heinz E (2003b) Evaluation of putative seed-specific promoters for Linum usitatissimum. Mol Breeding 11:149–158

    Article  CAS  Google Scholar 

  • Facciotti MT, Bertain PB, Yuan L (1999) Improved stearate phenotype in transgenic canola expressing a modified acyl-acyl carrier protein thioesterase. Nature Biotechnol 17:593–597

    Article  CAS  Google Scholar 

  • Fourmann M, Barret P, Renard M, Pelletier G, Delourme R, Brunel D (1998) The two genes homologous to Arabidopsis FAE1 co-segregate with the two loci governing erucic acid content in Brassica napus. Theor Appl Genet 96:852–858

    Article  CAS  Google Scholar 

  • Grundy SM (1994) Influence of stearic acid on cholesterol metabolism relative to other long-chain fatty acids. Am J Clin Nutr 60:986–990

    Google Scholar 

  • Han J, Lühs W, Sonntag K, Zähringer U, Borchardt DS, Wolter FP, Heinz E, Frentzen M (2001) Functional characterisation of β-ketoacyl-CoA synthase genes from B. napus L. Plant Mol Biol 46:229–239

    Article  PubMed  CAS  Google Scholar 

  • Hawkins DJ, Kridl JC (1998) Characterisation of acyl-ACP thioesterases of mangosteen (Garcinia mangostana) seed and high levels of stearate production in transgenic canola. Plant J 13:743–752

    Article  PubMed  CAS  Google Scholar 

  • Hlousek-Radojcic A, Imai H, Jaworski JG (1995) Oleoyl-CoA is not an immediate substrate for fatty acid elongation in developing seeds of Brassica napus. Plant J 8:803–809

    CAS  Google Scholar 

  • Knutzon DS, Thompson GA, Radke SE, Johnson WB, Knauf VC, Kridl JC (1992) Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene. Proc Natl Acad Sci USA. 89:2624–2628

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of T-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Lassner MW, Lardizabal K, Metz JG (1996) A jojoba ß-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Singh S, Green A (2002) High-stearic and high-oleic cottonseed oils produced by hpRNA-mediated posttranscriptional gene silencing. Plant Physiol 129:1732–1743

    Article  PubMed  CAS  Google Scholar 

  • Lühs W, Friedt W (1994) Stand und Perspektiven der Züchtung von Raps (Brassica napus L.) mit hohem Erucasäure-Gehalt im Öl für industrielle Nutzungszwecke. Fat Sci Technol 96:137–146

    Google Scholar 

  • Millar A, Kunst L (1997) Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J 12:121–131

    Article  PubMed  CAS  Google Scholar 

  • Puyaubert J, Garbay B, Costaglioli P, Dieryck W, Roscoe TJ, Renard M, Cassagne C, Lessire R (2001) Acyl-CoA elongase expression during seed development in␣Brassica napus. Biochim Biophys Acta 1533:141–152

    PubMed  CAS  Google Scholar 

  • Puyaubert J, Garcia C, Chevalier S, Lessire R (2005) Acyl-CoA elongase, a key enzyme in the development of high-erucic acid rapeseed? Eur J Lipid Sci Technol 107:263–267

    Article  CAS  Google Scholar 

  • Reed KC, Mann DA (1985). Rapid transfer of DNA from agarose gels to nylon membranes. Nucl Acid Res 13:7207–7221

    CAS  Google Scholar 

  • Roscoe TJ, Lessire R, Puyaubert J, Renard M, Delseny M (2001) Mutations in the fatty acid elongation 1 gene are associated with a loss of β-ketoacyl-CoA synthase activity in low erucic acid rapeseed. FEBS Lett 492:107–111

    Article  PubMed  CAS  Google Scholar 

  • Singh SP, Zhou XR, Liu Q, Stymne S, Green AG (2005) Metabolic engineering of new fatty acids in plants. Curr Opin Plant Biol 8:197–203

    Article  PubMed  CAS  Google Scholar 

  • Slocombe SP, Piffanelli P, Fairbairn D, Bowra S, Hatzopoulos P, Tsiantis M, Murphy DJ (1994) Temporal and Tissue-Specific Regulation of a Brassica napus Stearoyl-Acyl Carrier Protein Desaturase Gene. Plant Physiol 104:1167–1176

    Article  PubMed  CAS  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    Article  PubMed  CAS  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  PubMed  CAS  Google Scholar 

  • Syring-Ehemann A (2001) Isolierung und Charakterisierung von Acyl-ACP-Desaturasegenen aus dem Fettsäurebiosyntheseweg von Lindera obtusiloba. PhD Thesis, Universität Karlsruhe

  • Thelen JJ, Ohlrogge JB (2002) Metabolic engineering of fatty acid biosynthesis in plants. Metab Eng 4:12–21

    Article  PubMed  CAS  Google Scholar 

  • Töpfer R, Martini N, Schell J (1995) Modification of plant lipid synthesis. Science 268:681–686

    PubMed  Google Scholar 

  • Voelker TA, Jones A, Cranmer AM, Davies HM, Knutzon DS (1997) Broad-range and binary-range suggest an alternative mechanism for medium-chain production in seeds. Plant Physiol 114:669–667

    Article  PubMed  CAS  Google Scholar 

  • Weier D, Hanke C, Eickelkamp A, Lühs W, Dettendorfer J, Schaffert E, Möllers C, Friedt W, Wolter FP, Frentzen M (1997) Trierucoylglycerol biosynthesis in transgenic plants of rapeseed (Brassica napus L.). Fett/Lipid 99:160–165

    CAS  Google Scholar 

  • Yu S, Derr J, Etherton TD, Kris-Etherton PM (1995) Plasma cholesterol-predictive equations demonstrate that stearic acid is neutral and monounsaturated fatty acids are hypocholesterolemic. Am J Clin Nutr 61:1129–1139

    PubMed  CAS  Google Scholar 

  • Zarhloul MK, Friedt W, Khoschkhoi, Yazdi MR, Lühs W (1999) Genetic transformation and shoot regeneration ability of re-synthesised Brassica napus line ‘RS 306’. Cruciferae Newsl 21:59–60

    Google Scholar 

Download references

Acknowledgements

This research was jointly funded by the German Federal Ministry of Consumer Protection, Food and Agriculture (BMVEL), the Fachagentur für Nachwachsende Rohstoffe e.V. (FNR, Project No. 97 NR 079-F), Guelzow, and Norddeutsche Pflanzenzucht Hans-Georg Lembke KG, Hohenlieth, Germany. The authors thank Sonja Weber, Stavros Tzigos, Petra Degen and Marinela-Gabriela Ciobanu for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Friedt.

Additional information

Karim Zarhloul and Christof Stoll have contributed in equal parts to the present work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karim Zarhloul, M., Stoll, C., Lühs, W. et al. Breeding high-stearic oilseed rape (Brassica napus) with high- and low-erucic background using optimised promoter-gene constructs. Mol Breeding 18, 241–251 (2006). https://doi.org/10.1007/s11032-006-9032-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-006-9032-3

Keywords

Navigation