Skip to main content
Log in

Synthesis of new curcumin-based aminocarbonitrile derivatives incorporating 4H-pyran and 1,4-dihydropyridine heterocycles

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

A multicomponent reaction containing curcumin, aldehydes, malononitrile and amine was developed for the one-pot synthesis of a novel library of 4H-pyran and 1,4-dihyropyridin heterocycles incorporating curcumin moiety. The products were obtained in the presence of p-toluenesulfonic acid as catalyst in ethanol as solvent in good to excellent yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Vogel A, Pelletier J (1815) Examenchimique de la racine de Curcuma. J Pharm 1:289–300

    Google Scholar 

  2. Vogel A Jr (1842) Mémoiresur la Curcumine. J Pharm Chem 3:20–27

    Google Scholar 

  3. Litwinienko G, Ingold KU (2004) Abnormal solvent effects on hydrogen atom abstraction. 2. Resolution of the curcumin antioxidant controversy. The role of sequential proton loss electron transfer. J Org Chem 69:5888–5896. https://doi.org/10.1021/jo049254j

    Article  CAS  PubMed  Google Scholar 

  4. Mishra S, Narain U, Mishra R, Misra K (2005) Design, development and synthesis of mixed bioconjugates of piperic acid-glycine, curcumin-glycine/alanine and curcuminglycine-piperic acid and their antibacterial and antifungal properties. Bioorg Med Chem 13:1477–1486. https://doi.org/10.1016/j.bmc.2004.12.057

    Article  CAS  PubMed  Google Scholar 

  5. Kant V, Gopal A, Pathak NN, Kumar P, Tandan SK, Kumar D (2014) Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol 20:322–330. https://doi.org/10.1016/j.intimp.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  6. Ammon HP, Wahl MA (1991) Pharmacology of curcuma longa. Planta Med 57:1–7. https://doi.org/10.1055/s-2006-960004

    Article  CAS  PubMed  Google Scholar 

  7. Rashmi R, Santhosh Kumar TR, Karunagaran D (2003) Human colon cancer cells differ in their sensitivity to curcumin-induced apoptosis and heat shock protects them by inhibiting the release of apoptosis-inducing factor and caspases. FEBS Lett 538:19–24. https://doi.org/10.1016/s0014-5793(03)00099-1

    Article  CAS  PubMed  Google Scholar 

  8. Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75:787–809. https://doi.org/10.1016/j.bcp.2007.08.016

    Article  CAS  PubMed  Google Scholar 

  9. Du ZY, Liu RR, Shao WY, Mao XP, Ma L, Gu LQ, Huang ZS, Chan AS (2006) α-Glucosidase inhibition of natural curcuminoids and curcumin analogs. Eur J Med Chem 41:213–218. https://doi.org/10.1016/j.ejmech.2005.10.012

    Article  CAS  PubMed  Google Scholar 

  10. Dovigo LN, Carmello JC, de Souza Costa CA, Vergani CE, Brunetti IL, Bagnato VS, Pavarina AC (2013) Curcumin-mediated photodynamic inactivation of Candida albicans in a murine model of oral candidiasis. Sabouraudia 51:243–251. https://doi.org/10.3109/13693786.2012.714081

    Article  CAS  Google Scholar 

  11. Gaffer H, Mashaly H, Abdel-Rhman SH, Hammouda M (2017) Synthesis of novel dyes based on curcumin for the creation of antibacterial silk fabrics. Pigm Resin Technol 46:478–484. https://doi.org/10.4103/epj.epj_10_18

    Article  CAS  Google Scholar 

  12. Ahsan N, Mishra S, Jain MK, Surolia A, Gupta S (2015) Curcuminpyrazole and its derivative (N-(3-nitrophenylpyrazole) curcumininhibit aggregation, disrupt fibrils and modulate toxicity of wild type and mutant α-synuclein. Sci Rep 5:1–16. https://doi.org/10.1038/srep09862

    Article  CAS  Google Scholar 

  13. Wan SB, Yang H, Zhou Z, Cui QC, Chen D, Kanwar J, Chan TH (2010) Evaluation of curcumin acetates and amino acid conjugates as proteasome inhibitors. Int J Mol Med 26:447–455. https://doi.org/10.3892/ijmm_00000484

    Article  CAS  PubMed  Google Scholar 

  14. Ponmuthu KV, Kumaraguru D, Arockiam JB, Velu S, Sepperumal M, Ayyanar S (2016) New quaternary phosphonium salt as multi-site phase-transfer catalyst for various alkylation reactions. Res Chem Intermediat 42:8345–8358. https://doi.org/10.1007/s11164-016-2600-1

    Article  CAS  Google Scholar 

  15. Wang S, Peng X, Cui L, Li T, Yu B, Ma G, Ba X (2018) Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation. Spectrochim Acta A Mol Biomol Spectrosc 190:89–95. https://doi.org/10.1016/j.saa.2017.09.010

    Article  CAS  PubMed  Google Scholar 

  16. Deck LM, Hunsaker LA, Vander Jagt TA, Whalen LJ, Royer RE, Vander Jagt DL (2018) Activation of anti-oxidant Nrf2 signaling by enone analogues of curcumin. Eur J Med Chem 143:854–865. https://doi.org/10.1016/j.ejmech.2017.11.048

    Article  CAS  PubMed  Google Scholar 

  17. Bayomi SM, El-Kashef HA, El-Ashmawy MB, Nasr MN, El-Sherbeny MA, Badria FA, Abou-Zeid LA, Ghaly MA, Abdel-Aziz NI (2013) Synthesis and biological evaluation of new curcumin derivatives as antioxidant and antitumor agents. Med Chem Res 22:1147–1162. https://doi.org/10.1007/s00044-012-0116-9

    Article  CAS  Google Scholar 

  18. Liu GY, Sun YZ, Zhou N, Du XM, Yang J, Guo SJ (2016) 3,3′-OH curcumin causes apoptosis in HepG2 cells through ROS-mediated pathway. Eur J Med Chem 112:157–163. https://doi.org/10.1016/j.ejmech.2016.02.019

    Article  CAS  PubMed  Google Scholar 

  19. Li W, Wu W, Yu F, Huang H, Liang X, Ye J (2011) Catalytic asymmetric Michael addition with curcumin derivative. Org Biomol Chem 9:2505–2511. https://doi.org/10.1039/C0OB00757A

    Article  CAS  PubMed  Google Scholar 

  20. Wortelboer HM, Usta M, van der Velde AE, Boersma MG, Spenkelink B, van Zanden JJ, Rietjens IMCM, Van Bladeren PJ, Cnubben NHP, Cnubben NH (2003) Interplay between MRP inhibition and metabolism of MRP inhibitors: the case of curcumin. Chem Res Toxicol 16:1642–1651. https://doi.org/10.1016/j.bcp.2004.11.002

    Article  CAS  PubMed  Google Scholar 

  21. Keum YS, Choi BY (2014) Molecular and chemical regulation of the Keap1–Nrf2 signaling pathway. Molecules 19:10074–10089. https://doi.org/10.3390/molecules190710074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bicer N, Yildiz E, Yegani AA, Aksu F (2018) Synthesis of curcumin complexes with iron(III) and manganese(II), and effects of curcumin–iron(III) on Alzheimer’s disease. New J Chem 42:8098–8104. https://doi.org/10.1039/C7NJ04223J

    Article  CAS  Google Scholar 

  23. Banerjee S, Pant I, Khan I, Prasad P, Hussain A, Kondaiah P, Chakravarty AR (2015) Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium(IV) moiety. Dalton Trans 44:4108–4122. https://doi.org/10.1039/C4DT02165G

    Article  CAS  PubMed  Google Scholar 

  24. Bukhari SNA, Jantan IB, Jasamai M, Ahmad W, Amjad MWB (2013) Synthesis and biological evaluation of curcumin analogues. J Med Sci 13:501–513. https://doi.org/10.3923/jms.2013.501.513

    Article  CAS  Google Scholar 

  25. Narlawar R, Pickhardt M, Leuchtenberger S, Bauman K, Krause S, Dyrks T, Weggen S, Mandelkow E, Schmidt B (2008) Curcumin-derived pyrazoles and isoxazoles: swiss army knives or blunt tools for Alzheimer’s disease? Chem Med Chem 3:165–172. https://doi.org/10.1002/cmdc.200700218

    Article  CAS  PubMed  Google Scholar 

  26. Esatbeyoglu T, Huebbe P, Ernst I, Chin D, Wagner AE, Rimbach G (2012) Curcumin—from molecule to biological function. Angew Chem Int Ed 51:5308–5332. https://doi.org/10.1002/anie.201107724

    Article  CAS  Google Scholar 

  27. Das J, Pany S, Panchal S, Majhi A, Rahman GM (2011) Binding of isoxazole and pyrazole derivatives of curcumin with the activator binding domain of novel protein kinase C. Bioorg Med Chem 19:6196–6202. https://doi.org/10.1016/j.bmc.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  28. Samaan N, Zhong Q, Fernandez J, Chen G, Hussain AM, Zheng S, Wang G, Chen QH (2014) Design, synthesis, and evaluation of novel heteroaromatic analogs of curcumin as anti-cancer agents. Eur J Med Chem 75:123–131. https://doi.org/10.1016/j.ejmech.2014.01.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mahal A, Wu P, Jiang ZH, Wei X (2017) Synthesis and cytotoxic activity of novel tetrahydrocurcumin derivatives bearing pyrazole moiety. Nat Prod Bioprospect 7:461–469. https://doi.org/10.1007/s13659-017-0143-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Laali KK, Greves WJ, Correa-Smits SJ, Zwarycz AT, Bunge SD, Borosky GL, Manna A, Paulus A, Chanan-Khan A (2018) Novel fluorinated curcuminoids and their pyrazole and isoxazole derivatives: synthesis, structural studies, computational/docking and in vitro bioassay. J Fluor Chem 26:82–98. https://doi.org/10.1016/j.jfluchem.2017.11.013

    Article  CAS  Google Scholar 

  31. Tong S, Zhang M, Wang S, Yin R, Yu R, Wan S, Zhang L (2016) Isothiouronium modification empowers pyrimidine-substituted curcumin analogs potent cytotoxicity and Golgi localization. Eur J Med Chem 123:849–857. https://doi.org/10.1016/j.ejmech.2016.07.071

    Article  CAS  PubMed  Google Scholar 

  32. Carosati E, Ioan P, Micucci M, Broccatelli F, Cruciani G, Zhorov BS, Chiarini A, Budriesi R (2012) 1,4-Dihydropyridine scaffold in medicinal chemistry, the story so far and perspectives (part 2): action in other targets and antitargets. Curr Med Chem 19:4306–4323. https://doi.org/10.2174/092986712802884204

    Article  CAS  PubMed  Google Scholar 

  33. Herrera RP (2016) Organocatalytic transfer hydrogenation and hydrosilylation reactions. Top Curr Chem 374:29. https://doi.org/10.1007/s41061-016-0032-4

    Article  CAS  Google Scholar 

  34. Cui SF, Addla D, Zhou CH (2016) Novel 3-aminothiazolquinolones: design, synthesis, bioactive evaluation, SARs, and preliminary antibacterial mechanism. J Med Chem 59:4488–4510. https://doi.org/10.1021/acs.jmedchem.5b01678

    Article  CAS  PubMed  Google Scholar 

  35. Bonsignore L, Loy G, Secci D, Calignano A (1993) Synthesis and pharmacological activity of 2-oxo-(2H)1-benzopyran-3-carboxamide derivatives. Eur J Med Chem 28:517–520. https://doi.org/10.1016/0223-5234(93)90020-F

    Article  CAS  Google Scholar 

  36. Peng Y, Song G (2007) Amino-functionalized ionic liquid as catalytically active solvent for microwave-assisted synthesis of 4H-pyrans. Catal Commun 8:111–114. https://doi.org/10.1016/j.catcom.2006.05.031

    Article  CAS  Google Scholar 

  37. Lei M, Ma L, Hu L (2011) A green, efficient, and rapid procedure for the synthesis of 2-amino-3-cyano-1,4,5,6-tetrahydropyrano[3,2-c]quinolin-5-one derivatives catalyzed by ammonium acetate. Tetrahedron Lett 52:2597–2600. https://doi.org/10.1016/j.tetlet.2011.03.061

    Article  CAS  Google Scholar 

  38. Bihani M, Bora PP, Bez G (2012) Synthesis of polyfunctionalized 4H-pyrans. J Chem 2013:1–7. https://doi.org/10.1155/2013/785930

    Article  CAS  Google Scholar 

  39. Tamaddon F, Azadi D (2018) Nicotinium methane sulfonate (NMS): a bio-renewable protic ionic liquid and bi-functional catalyst for synthesis of 2-amino-3-cyano pyridines. J Mol Liq 249:789–794. https://doi.org/10.1016/j.molliq.2017.10.153

    Article  CAS  Google Scholar 

  40. Kalaria PN, Satasia SP, Avalani JR, Raval DK (2014) Ultrasound-assisted one-pot four-component synthesis of novel 2-amino-3-cyanopyridine derivatives bearing 5-imidazopyrazole scaffold and their biological broadcast. Eur J Med Chem 83:655–664. https://doi.org/10.1016/j.ejmech.2014.06.071

    Article  CAS  PubMed  Google Scholar 

  41. Tabassum S, Govindaraju S, Pasha MA (2015) Ultrasound mediated, iodine catalyzed green synthesis of novel 2-amino-3-cyano-4H-pyran derivatives. Ultrason Sonochem 24:1–7. https://doi.org/10.1016/j.ultsonch.2014.12.006

    Article  CAS  PubMed  Google Scholar 

  42. Orru RV, de Greef M (2003) Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis 10:1471–1499. https://doi.org/10.1055/s-2003-40507

    Article  Google Scholar 

  43. Nourisefat M, Panahi F, Khalafi-Nezhad A (2014) Carbohydrates as a reagent in multicomponent reactions: one-pot access to a new library of hydrophilic substituted pyrimidine-fused heterocycles. Org Biomol Chem 12:9419–9426. https://doi.org/10.1039/C4OB01791A

    Article  CAS  PubMed  Google Scholar 

  44. Jadhavar PS, Dhameliya TM, Vaja MD, Kumar D, Sridevi JP, Yogeeswari P, Sriram D, Chakraborti AK (2016) Synthesis, biological evaluation and structure–activity relationship of 2-styrylquinazolones as anti-tubercular agents. Bioorg Med Chem Lett 26:2663–2669. https://doi.org/10.1016/j.bmcl.2016.04.012

    Article  CAS  PubMed  Google Scholar 

  45. Parikh N, Roy SR, Seth K, Kumar A, Chakraborti AK (2016) ‘On-water’ multicomponent reaction for the diastereoselective synthesis of functionalized tetrahydropyridines and mechanistic insight. Synthesis 48:547–556. https://doi.org/10.1055/s-0035-1561296

    Article  CAS  Google Scholar 

  46. Kumar D, Jadhavar PS, Nautiyal M, Sharma H, Meena PK, Adane L, Pancholia S, Chakraborti AK (2015) Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4(3H)-ones: applications towards the synthesis of drugs. RSC Adv 5:30819–30825. https://doi.org/10.1039/C5RA03888J

    Article  CAS  Google Scholar 

  47. Kumar D, Sonawane M, Pujala B, Jain VK, Bhagat S, Chakraborti AK (2013) Supported protic acid-catalyzed synthesis of 2,3-disubstituted thiazolidin-4-ones: enhancement of the catalytic potential of protic acid by adsorption on solid supports. Green Chem 15:2872–2884. https://doi.org/10.1039/C3GC41218K

    Article  CAS  Google Scholar 

  48. Kumar D, Kommi DN, Bollineni N, Patel AR, Chakrabort AK (2012) Catalytic procedures for multicomponent synthesis of imidazoles: selectivity control during the competitive formation of tri-and tetrasubstituted imidazoles. Green Chem 14:2038–2049. https://doi.org/10.1039/C2GC35277J

    Article  CAS  Google Scholar 

  49. Ibarra IA, Islas-Jácome A, González-Zamora E (2018) Synthesis of polyheterocycles via multicomponent reactions. Org Biomol Chem 16:1402–1418. https://doi.org/10.1039/C7OB02305G

    Article  CAS  PubMed  Google Scholar 

  50. Bhagat S, Chakraborti AK (2008) Zirconium(IV) compounds as efficient catalysts for synthesis of α-aminophosphonates. J Org Chem 73:6029–6032. https://doi.org/10.1021/jo8009006

    Article  CAS  PubMed  Google Scholar 

  51. Singh KN (2018) Multicomponent reactions: a sustainable tool to 1,2- and 1,3-azoles. Org Biomol Chem 16:9084–9116. https://doi.org/10.1039/C8OB01872C

    Article  PubMed  Google Scholar 

  52. Dömling A, Wang W, Wang K (2012) Chemistry and biology of multicomponent reactions. Chem Rev 112:3083–3135. https://doi.org/10.1021/cr100233r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khalafi-Nezhad A, Sarikhani S, Shahidzadeh ES, Panahi F (2012) L-Proline-promoted three-component reaction of anilines, aldehydes and barbituric acids/malononitrile: regioselective synthesis of 5-arylpyrimido[4,5-b]quinoline-diones and 2-amino-4-arylquinoline-3-carbonitriles in water. Green Chem 14:2876–2884. https://doi.org/10.1039/C2GC35765H

    Article  CAS  Google Scholar 

  54. Khalafi-Nezhad A, Panahi F (2011) Synthesis of new dihydropyrimido [4,5-b] quinolinetrione derivatives using a four-component coupling reaction. Synthesis 2011:984–992. https://doi.org/10.1055/s-0030-1258446

    Article  CAS  Google Scholar 

  55. Khalafi-Nezhad A, Panahi F, Golesorkhi B (2013) One-pot synthesis of 5,7,8,9,9a,10-hexahydro-8-thioxotetrahydropyrido[2,3-d: 6,5-d′]dipyrimidine-2,4,6(1H,3H,5aH)-triones via a four-component coupling reaction of aldehydes, amines, barbituric acids, and thiouracil. Helv Chim Acta 96:1155–1162. https://doi.org/10.1002/hlca.201200350

    Article  CAS  Google Scholar 

  56. Bhagat S, Shah P, Garg SK, Mishra S, Kaur PK, Singh S, Chakraborti AK (2014) α-Aminophosphonates as novel anti-leishmanial chemotypes: synthesis, biological evaluation, and CoMFA studies. Med Chem Commun 5:665–670. https://doi.org/10.1039/C3MD00388D

    Article  CAS  Google Scholar 

  57. Sahu PK, Sahu PK, Gupta SK, Agarwal DD (2013) Role of calcinations and basicity of hydrotalcite as catalyst for environmental benign novel synthesis of 4H-pyrimido [2,1-b][1,3] benzothiazole derivatives of curcumin. Catal Sci Technol 3:1520–1530. https://doi.org/10.1039/C3CY20807A

    Article  CAS  Google Scholar 

  58. Sahu PK, Sahu PK, Gupta SK, Thavaselvam D, Agarwal DD (2012) Synthesis and evaluation of antimicrobial activity of 4H-pyrimido [2,1-b] benzothiazole, pyrazole and benzylidene derivatives of curcumin. Eur J Med Chem 54:366–378. https://doi.org/10.1016/j.ejmech.2012.05.020

    Article  CAS  PubMed  Google Scholar 

  59. Lal J, Gupta SK, Thavaselvam D, Agarwal DD (2012) Design, synthesis, synergistic antimicrobial activity and cytotoxicity of 4-aryl substituted 3,4-dihydropyrimidinones of curcumin. Bioorg Med Chem Lett 22:2872–2876. https://doi.org/10.1016/j.bmcl.2012.02.056

    Article  CAS  PubMed  Google Scholar 

  60. Yousefi A, Yousefi R, Panahi F, Sarikhani S, Zolghadr AR, Bahaoddini A, Khalafi-Nezhad A (2015) Novel curcumin-based pyrano [2,3-d] pyrimidine anti-oxidant inhibitors for α-amylase and α-glucosidase: implications for their pleiotropic effects against diabetes complications. Int J Biol Macromol 78:46–55. https://doi.org/10.1016/j.ijbiomac.2015.03.060

    Article  CAS  PubMed  Google Scholar 

  61. Shekouhy M, Khalafi-Nezhad A (2015) Polyethylene glycol-bonded 1,8-diazabicyclo [5.4.0] undec-7-ene (PEG–DBU) as a surfactant-combined base catalyst for the application of nucleosides as reagents in multi-component syntheses of 8-substituted pyrido[2,3-d] pyrimidine-6-carbonitriles in water. Green Chem 17:4815–4829. https://doi.org/10.1039/C5GC01448D

    Article  CAS  Google Scholar 

  62. Khalafi-Nezhad A, Divar M, Panahi F (2013) Nucleosides as reagents in multicomponent reactions: one-pot synthesis of heterocyclic nucleoside analogues incorporating pyrimidine-fused rings. Tetrahedron Lett 54:220–222. https://doi.org/10.1016/j.tetlet.2012.11.003

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farhad Panahi or Ali Khalafi-Nezhad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajeh Dangolani, S., Panahi, F. & Khalafi-Nezhad, A. Synthesis of new curcumin-based aminocarbonitrile derivatives incorporating 4H-pyran and 1,4-dihydropyridine heterocycles. Mol Divers 25, 2123–2135 (2021). https://doi.org/10.1007/s11030-020-10104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10104-3

Keywords

Navigation