Skip to main content
Log in

Solvent-free synthesis and anticancer activity evaluation of benzimidazole and perimidine derivatives

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Benzimidazoles and perimidines are subsidiary structures for research and development of new biologically active molecules and have established prominence because of their promising biological activities. Two series of diversified heterocyclic molecules, tetracyclic benzimidazole derivatives, tetracyclic and pentacyclic perimidine derivatives have been synthesized in good yields by condensation of acid anhydrides and diacids with various diamines using microwave irradiation. All synthesized derivatives were fully characterized and evaluated for in vitro antiproliferative activity against five human cancer cell lines. Compounds 3a (breast T47D, lung NCl H-522), 3b (colon HCT-15), 3d (lung NCl H-522, ovary PA-1), 3f (breast T47D, liver HepG2) and 5a (breast T47D) exhibited good anticancer activity with \(\hbox {IC}_{50}\) values ranging from \(7.5\pm 0.3\,\upmu \hbox {M}\) to \(14.6\pm 0.4\,\upmu \hbox {M}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu L-T, Jiang Z, Shen J-J, Yi H, Zhan Y-C, Sha M-Q, Wang Z, Xue S-T, Li Z-R (2016) Design, synthesis and biological evaluation of novel benzimidazole-2-substituted phenyl or pyridine propyl ketene derivatives as antitumour agents. Eur J Med Chem 114:328–336. https://doi.org/10.1016/j.ejmech.2016.03.029

    Article  CAS  PubMed  Google Scholar 

  2. Hranjec M, Pavlovic G, Marjanovic M, Kralj M, Karminski-Zamola G (2010) Benzimidazole derivatives related to 2,3-acrylonitriles, benzimidazo[1,2-a] quinolines and fluorenes: synthesis, antitumor evaluation in vitro and crystal structure determination. Eur J Med Chem 45:2405–2417. https://doi.org/10.1016/j.ejmech.2010.02.022

    Article  CAS  PubMed  Google Scholar 

  3. Reddy TS, Kulhari H, Reddy VG, Bansal V, Kamal A, Shukla R (2015) Design, synthesis and biological evaluation of 1,3 diphenyl-1\(H-\)pyrazole derivatives containing benzimidazole skeleton as potential anticancer and apoptosis inducing agents. Eur J Med Chem 101:790–805. https://doi.org/10.1016/j.ejmech.2015.07.031

    Article  CAS  PubMed  Google Scholar 

  4. Hu Z, Ou L, Li S, Yang L (2014) Synthesis and biological evaluation of 1-cyano-2 aminobenzimidazole derivatives as a novel class of antitumor agents. Med Chem Res 23:3029–3038. https://doi.org/10.1007/s00044-013-0888-6

    Article  CAS  Google Scholar 

  5. Coban G, Zencir S, Zupko I, Rethy B, Gunes HS, Topcu Z (2009) Synthesis and biological activity evaluation of 1\(H\)-benzimidazoles via mammalian DNA topoisomerase I and cytostaticity assays. Eur J Med Chem 44:2280–2285. https://doi.org/10.1016/j.ejmech.2008.06.018

    Article  CAS  PubMed  Google Scholar 

  6. Gowda NRT, Kavitha CV, Kishore K, Chiruvella KK, Joy O, Rangappa KS, Raghavan SC (2009) Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)-1\(H\)-benzimidazole-5-carboxylic acid derivatives and their precursors as antileukemic agents. Bioorg Med Chem Lett 19:4594–4600. https://doi.org/10.1016/j.bmcl.2009.06.103

    Article  CAS  PubMed  Google Scholar 

  7. Xiang P, Zhou T, Wang L, Sun C-Y, Hu J, Zhao Y-L, Yang L (2012) Novel benzothiazole, benzimidazole and benzoxazole derivatives as potential antitumor agents: synthesis and preliminary in vitro biological evaluation. Molecules 17:873–883. https://doi.org/10.3390/molecules17010873

    Article  CAS  PubMed  Google Scholar 

  8. Wang Y-T, Qin Y-J, Yang N, Zhang Y-L, Liu C-H, Zhu H-L (2015) Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors. Eur J Med Chem 99:125–137. https://doi.org/10.1016/j.ejmech.2015.05.021

    Article  CAS  PubMed  Google Scholar 

  9. Harkala KJ, Eppakayala L, Maringanti TC (2014) Synthesis and biological evaluation of benzimidazole-linked 1,2,3-triazole congeners as agents. Org Med Chem Lett 4:1–4. https://doi.org/10.1186/s13588-014-0014-x

    Article  CAS  Google Scholar 

  10. Mariappan G, Hazarika R, Alam F, Karki R, Patangia U, Nath S (2015) Synthesis and biological evaluation of 2-substituted benzimidazole derivatives. Arab J Chem 8:715–719. https://doi.org/10.1016/j.arabjc.2011.11.008

    Article  CAS  Google Scholar 

  11. Fang X-J, Jeyakkumar P, Avula SR, Zhou Q, Zhou C-H (2016) Design, synthesis and biological evaluation of 5-fluorouracil-derived benzimidazoles as novel type of potential antimicrobial agents. Bioorg Med Chem Lett 26:2584–2588. https://doi.org/10.1016/j.bmcl.2016.04.036

    Article  CAS  PubMed  Google Scholar 

  12. Soni LK, Narsinghani T, Sethi A (2012) Anti-microbial benzimidazole derivatives: synthesis and in vitro biological evaluation. Med Chem Res 21:4330–4334. https://doi.org/10.1007/s00044-012-9976-2

    Article  CAS  Google Scholar 

  13. Marinescu M, Tudorache DG, Marton GI, Zalaru C-M, Popa M, Chifiriuc M-C, Stavarache C-E, Constantinescu C (2017) Density functional theory molecular modeling, chemical synthesis, and antimicrobial behavior of selected benzimidazole derivatives. J Mol Struct 1130:463–471. https://doi.org/10.1016/j.molstruc.2016.10.066

    Article  CAS  Google Scholar 

  14. Mavrova AT, Yancheva D, Anastassova N, Anichina K, Zvezdanovic J, Djordjevic A, Markovic D, Smelcerovic A (2015) Synthesis, electronic properties, antioxidant and antibacterial activity of some new benzimidazoles. Bioorg Med Chem 23:6317–6326. https://doi.org/10.1016/j.bmc.2015.08.029

    Article  CAS  PubMed  Google Scholar 

  15. Ravishankara DK, Chandrashekara PG (2012) Synthesis of some novel benzimidazole derivatives and its biological evaluation. Eur J Chem 3:359–362. https://doi.org/10.5155/eurjchem.3.3.359-362.607

    Article  CAS  Google Scholar 

  16. Ramprasad J, Nayak N, Dalimba U, Yogeeswari P, Sriram D, Peethambar SK, Achur R, Kumar HSS (2015) Synthesis and biological evaluation of new imidazo[2,1-b][1,3,4] thiadiazole-benzimidazole derivatives. Eur J Med Chem 95:49–63. https://doi.org/10.1016/j.ejmech.2015.03.024

    Article  CAS  PubMed  Google Scholar 

  17. Kwak HJ, Pyun YM, Kim JY, Pagire HS, Kim KY, Kim KR, Rhee SD, Jung WH, Song JS, Bae MA, Lee DH, Ahn JH (2013) Synthesis and biological evaluation of aminobenzimidazole derivatives with a phenylcyclohexyl acetic acid group as anti-obesity and anti-diabetic agents. Bioorg Med Chem Lett 23:4713–4718. https://doi.org/10.1016/j.bmcl.2013.05.081

    Article  CAS  PubMed  Google Scholar 

  18. Jain P, Sharma PK, Rajak H, Pawar RS, Patil UK, Singour PK (2010) Design, synthesis and biological evaluation of some novel benzimidazole derivatives for their potential anticonvulsant activity. Arch Pharm Res 33:971–980. https://doi.org/10.1007/s12272-010-0701-8

    Article  CAS  PubMed  Google Scholar 

  19. Paramashivappa R, Kumar PP, Rao PVS, Rao AS (2003) Design, synthesis and biological evaluation of benzimidazole/benzothiazole and benzoxazole derivatives as cyclooxygenase inhibitors. Bioorg Med Chem Lett 13:657–660. https://doi.org/10.1016/s0960-894x(02)01006-5

    Article  CAS  PubMed  Google Scholar 

  20. Sahoo PK, Behera P (2010) Synthesis and biological evaluation of [1,2,4]triazino[4,3-a] benzimidazole acetic acid derivatives as selective aldose reductase inhibitors. Eur J Med Chem 45:909–914. https://doi.org/10.1016/j.ejmech.2009.11.031

    Article  CAS  PubMed  Google Scholar 

  21. Charton J, Girault-Mizzi S, Debreu-Fontaine M-A, Foufelle F, Hainault I, Bizot-Espiard J-G, Caignard D-H, Sergheraerta C (2006) Synthesis and biological evaluation of benzimidazole derivatives as potent AMP-activated protein kinase activators. Bioorg Med Chem 14:4490–4518. https://doi.org/10.1016/j.bmc.2006.02.028

    Article  CAS  PubMed  Google Scholar 

  22. Dzieduszycka M, Martelli S, Arciemiuk M, Bontemps-Gracz MM, Kupieca A, Borowskia E (2002) Effect of modification of 6 [(aminoalkyl)amino]-7\(H\)-benzo[e]-perimidin-7-ones on their cytotoxic activity toward sensitive and multidrug resistant tumor cell lines. Synthesis and biological evaluation. Bioorg Med Chem 10:1025–1035. https://doi.org/10.1016/S0968-0896(01)00358-3

    Article  CAS  PubMed  Google Scholar 

  23. Stefanska B, Dzieduszycka M, Martelli S, Tarasiuk J, Bontemps-Gracz M, Borowski E (1993) 6-[(Aminoalkyl)amino]-substituted 7\(H\)-benzo[e]perimidin-7-ones as novel antineoplastic agents. Synthesis and biological evaluation. J Med Chem 36:38–41. https://doi.org/10.1021/jm00053a005

    Article  CAS  PubMed  Google Scholar 

  24. Farghaly TA, Abbas EMH, Dawood KM, El-Naggar TBA (2014) Synthesis of 2-phenylazonaphtho[1,8- ef][1,4]diazepines and 9-(3-arylhydrazono)pyrrolo[1,2-a]perimidines as antitumor agents. Molecules 19:740–755. https://doi.org/10.3390/molecules19010740

    Article  PubMed  Google Scholar 

  25. Farghaly TA, Abdallah MA, Muhammad ZA (2015) New 2-heterocyclic perimidines: synthesis and antimicrobial activity. Res Chem Intermed 41:3937–3947. https://doi.org/10.1007/s11164-013-1501-9

    Article  CAS  Google Scholar 

  26. Liu K-C, Chen H-H, Lin Y-O (1983) Synthesis and anorectic activity of thiazolo[3,2-a]perimidine. Arch Pharm 316:728–729. https://doi.org/10.1002/ardp.19833160817

    Article  CAS  Google Scholar 

  27. Sondhi SM, Rani R, Singh J, Roy P, Agrawal SK, Saxena AK (2010) Solvent free synthesis, anti-inflammatory and anticancer activity evaluation of tricyclic and tetracyclic benzimidazole derivatives. Bioorg Med Chem Lett 20:2306–2310. https://doi.org/10.1016/j.bmcl.2010.01.147

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S, Kumar N, Roy P, Sondhi SM (2013) Synthesis, anti-inflammatory, and antiproliferative activity evaluation of isoindole, pyrrolopyrazine, benzimidazoisoindole, and benzimidazopyrrolopyrazine derivatives. Mol Divers 17:753–766. https://doi.org/10.1007/s11030-013-9472-8

    Article  CAS  PubMed  Google Scholar 

  29. Kumar A, Kumar N, Roy P, Sondhi SM, Sharma A (2015) Synthesis of acridine cyclic imide hybrid molecules and their evaluation for anticancer activity. Med Chem Res 24:3272–3282. https://doi.org/10.1007/s00044-015-1380-2

    Article  CAS  Google Scholar 

  30. Kumar A, Kumar N, Roy P, Sondhi SM, Sharma A (2015) Microwave-assisted synthesis of benzenesulfonohydrazide and benzenesulfonamide cyclic imide hybrid molecules and their evaluation for anticancer activity. Med Chem Res 24:3760–3771. https://doi.org/10.1007/s00044-015-1414-9

    Article  CAS  Google Scholar 

  31. Al-Khathlan H, Zimmer H (1988) Dibromotriphenylphosphorane-promoted synthesis of condensed heterocyclic systems from aromatic diamines. J Heterocycl Chem 25:1047–1049. https://doi.org/10.1002/jhet.5570250367

    Article  CAS  Google Scholar 

  32. Alfredo NV, Likhatchev D, Ramirez SB, Vazquez JR, Valverde GC, Alexandrova L (2008) Highly effective low temperature route to pyrroloperimidines: synthesis and their copolymerization with styrene and methyl methacrylate. Polymer 49:3654–3662. https://doi.org/10.1016/j.polymer.2008.06.038

    Article  CAS  Google Scholar 

  33. Sahu RK, Magan A, Gupta B, Sondhi SM, Srimal RC, Patnaik GK (1994) Reactions of 4-isothiocyanato-4-methyl-2-pentanone with amines having functional group at \(\upbeta \) position and antiinflammatory evaluation of resulting heterocyclic compounds. Phosphorus Sulfur Silicon Relat Elem 88:45–51. https://doi.org/10.1080/10426509408036905

    Article  CAS  Google Scholar 

  34. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to technical staff of the Chemistry Department, I. I. T. Roorkee, for spectroscopic studies and elemental analysis. Mr. Anuj Kumar is thankful to MHRD, New Delhi, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anuj Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 3813 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Banerjee, S., Roy, P. et al. Solvent-free synthesis and anticancer activity evaluation of benzimidazole and perimidine derivatives. Mol Divers 22, 113–127 (2018). https://doi.org/10.1007/s11030-017-9790-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-017-9790-3

Keywords

Navigation