Skip to main content

Advertisement

Log in

Synthesis and biological evaluation of new benzo-thieno[3,2-d]pyrimidin-4-one sulphonamide thio-derivatives as potential selective cyclooxygenase-2 inhibitors

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The aim of this work was to evaluate the potential anti-inflammatory activity of eleven (515) new synthesized derivatives of benzo-thieno[3,2-d]pyrimidine on two cell models, namely human keratinocytes NCTC 2544 and mouse monocyte-macrophages J774. For the synthesis of test compounds an efficient approach was developed: the key isothiocyanate was prepared through a simple and ecological method using di-2-pyridyl thionocarbonate (DPT) in substitution of thiophosgene, a highly toxic agent, and the cyclization reaction of benzo-thiosemicarbazide derivates was performed through Wamhoff methods. This procedure can be a new alternative method economically and environmentally advantageous by the simplicity of procedure, reduction of isolation and purification steps, time, costs, and waste production. The potential anti-inflammatory activity of 515 was evaluated by determining the expression of cyclooxygenase (COX)-2, inducible NO synthase (iNOS), and intercellular adhesion molecule-1 (ICAM-1), and the release of prostaglandins (PG)E\(_{2}\) and interleukin-8 (IL-8). Our results demonstrate that the compounds 7, 10, 12, 13, 14, and 15 act as a potent inhibitor of COX-2, iNOS, ICAM-1 expression while also suppressing the production of PGE\(_{2 }\) and IL-8 in human keratinocytes NCTC 2544 exposed to interferon-gamma (IFN-\(\gamma \)) and histamine and monocyte-macrophages J774 cells treated with lipopolysaccharides (LPS). In conclusion, some derivatives of benzo-thieno[3,2-d]pyrimidine could be developed as a novel class of anti-inflammatory agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Salahuddin Md, Kakad S, Shantakumar SM (2009) Synthesis of some novel thieno[2,3-d] pyrimidines and their antibacterial activity. Eur J Chem 6:801–808. doi:10.1155/2009/361282

    CAS  Google Scholar 

  2. Vane JR, Bakhle YS, Botting RM (1998) Cyclooxygenases 1 and 2. Ann Rev Pharmacol Toxicol 38:98–120. doi:10.1146/annurev.pharmtox.38.1.97

    Google Scholar 

  3. Smith WL, DeWitt DL (1996) Prostaglandin endoperoxide H synthases 1 and 2. Adv Immunol 62:167–215. doi:10.1016/S0065-2776(08)60430-7

    Article  PubMed  CAS  Google Scholar 

  4. Xie WL, Chipman JG, Robertson DL, Erikson RL, Simmons DL (1991) Expression of a mitogen-responsive gene encoding prostaglandin synthase is regulated by mRNA splicing. Proc Natl Acad Sci USA 88:2692–2696. doi:10.1073/pnas.88.7.2692

    Article  PubMed  CAS  Google Scholar 

  5. Perkins DJ, Kniss DA (1997) Rapid and transient induction of cyclo-oxygenase 2 by epidermal growth factor in human amnion-derived WISH cells. Biochem J 321:677–681

    PubMed  CAS  Google Scholar 

  6. Diaz A, Chepenik KP, Korn JH, Reginato AM, Jimenez SA (1998) Differential regulation of cyclooxygenases 1 and 2 by interleukin-1 beta, tumor necrosis factor-alpha, and transforming growth factor-beta 1 in human lung fibroblasts. Exp Cell Res 241:222–229

    Article  PubMed  CAS  Google Scholar 

  7. Howe LR, Subbaramaiah K, Chung WJ, Dannenberg AJ, Brown AMC (1999) Transcriptional activation of cyclooxygenase-2 in Wnt-1-transformed mouse mammary epithelial cells. Cancer Res 59:1572–1577. ISSN: 0008–5472

    Google Scholar 

  8. Vadlamudi R, Mandal M, Adam L, Steinbach G, Mendelsohn J, Kumar K (1999) Regulation of cyclooxygenase-2 pathway by HER2 receptor. Oncogene 18:305–314. doi:10.1038/sj.onc.1202307

    Article  PubMed  CAS  Google Scholar 

  9. Rocca B, Spain LM, Pure E, Langenbach R, Patrono C, FitzGerald G (1999) Distinct roles of prostaglandin H synthases 1 and 2 in T-cell development. J Clin Invest 103:1469–1477. doi:10.1172/JCI6400

    Article  PubMed  CAS  Google Scholar 

  10. Yamagata K, Andreasson KI, Kaufmann WE, Barnes CA, Worley PF (1993) Expression of a mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and glucocorticoids. Neuron 11:371–386. doi:10.1016/0896-6273(93)90192-T

    Article  PubMed  CAS  Google Scholar 

  11. Kniss DA (1999) Cyclooxygenases in reproductive medicine and biology. J Soc Gynecol Invest 6:285–292. doi:10.1177/107155769900600602

    Article  CAS  Google Scholar 

  12. Harris RC, McKanna JA, Akai Y, Jacobson HR, Dubois RN, Breyer MD (1994) Cyclooxygenase-2 is associated with the macula densa of rat kidney and increases with salt restriction. J Clin Invest 94:2504–2510. doi:10.1172/JCI117620

    Article  PubMed  CAS  Google Scholar 

  13. Vio CP, Cespedes C, Gallardo P, Masferrer JL (1997) Renal identification of cyclooxygenase-2 in a subset of thick ascending limb cells. Hypertension 30:687–692. doi:10.1161/01.HYP.30.3.687

    Article  PubMed  CAS  Google Scholar 

  14. Ferreri NR, An SJ, McGiff JC (1999) Cyclooxygenase-2 expression and function in the medullary thick ascending limb. Am J Physiol 277:F360–F368

    PubMed  CAS  Google Scholar 

  15. Lanza A (1998) A guideline for the treatment and prevention of NSAID-induced ulcers. Members of the Ad Hoc Committee on Practice Parameters of the American College of Gastroenterology. Am J Gastroenterol 93:2037–2046. doi:10.1111/j.1572-0241.1998.00588

    Article  PubMed  CAS  Google Scholar 

  16. Singh G, Rosen Ramey D (1998) NSAID induced gastrointestinal complications: the ARAMIS perspective-1997. Arthritis, Rheumatism, and Aging Medical Information System. J Rheumatol Suppl 51:8–16

    PubMed  CAS  Google Scholar 

  17. Talley JJ (1999) Selective inhibitors of cyclooxygenase-2 (COX-2). Prog Med Chem 36:201–234

    Article  PubMed  CAS  Google Scholar 

  18. Litvinov VP (2004) Thienopyrimidines: synthesis, properties, and biological activity. Russ Chem Bull 53:487–516. doi:10.1023/B:RUCB.0000035630.75564.2b

    Article  CAS  Google Scholar 

  19. Alagarsamy V, Vijayakumar S, Solomon VR (2007) Synthesis of 2-mercapto-3-substituted-5,6-dimethylthieno[2,3-d] pyrimidin-4(3\(H\))-ones as new analgesic, anti-inflammatory agents. Biomed Phamacol 61:285–291. doi: 10.1016/j.biopha.2007.02.008

    Article  CAS  Google Scholar 

  20. Bhuiyan MD, Rahman KM, Hossain MD, Rahim A, Hossain MI, Abu Naser M (2006) Synthesis and anti microbial evaluation of some new thienopyrimidine derivatives. Acta Pharm 56:441–450

    PubMed  CAS  Google Scholar 

  21. El-Sherbeny MA, El-Ashmawy MB, El-Subbagh HI, El-Emam AA (1995) Synthesis, antimicrobial and antiviral evaluation of certain thienopyrimidine derivatives. Eur J Med Chem 30:445–449. doi:10.1016/0223-5234(96)88255-9

    Article  CAS  Google Scholar 

  22. Alagarsamy V, Meena S, Ramseshu KV, Solomon VR, Thirumuruganb K, Dhanabala K, Murugan M (2006) Synthesis, analgesic, anti-inflammatory, ucerogenic index and antibacterial activities of novel 2-methylthio-3-substituted-5,6,7,8-tetra- hydrobenzo(b)thieno[2,3-d]pyrimidin-4-(3\(H\))-ones. Eur J Med Chem 41:1293–1300. doi:10.3390/molecules15063932

    Google Scholar 

  23. Santagati A, Modica M, Santagati M, Cutuli V, Amore D, Caruso A (1995) Synthesis and pharmacological properties of thieno[\(2^{\prime },3^{\prime }:4,5\)]pyrimido [2,1-\(b\)][1,3,4]thiadiazine derivatives. Farmaco 50:605–609. doi: 10.1021/jm950866t

    PubMed  CAS  Google Scholar 

  24. Santagati A, Granata G, Marrazzo A, Santagati M (2003) Synthesis and effects on the COX-1 and COX-2 activity in human whole blood ex vivo of derivatives containing the [1]benzothienol-[3,2-d]pyrimidin-4-one heterocyclic system. Arch Pharm Med Chem 336:429–435. doi:10.1002/ardp.200300753

    Article  CAS  Google Scholar 

  25. DeWitt DL (1999) Cox-2-selective inhibitors: the new super aspirins. Mol Pharmacol 55:625–631

    PubMed  CAS  Google Scholar 

  26. Dannhart G, Kiefer W (2001) Cyclooxygenase inhibitors-current status and future prospects. Eur J Med Chem 36:109–126. doi:10.1016/S0223-5234(01)01197-7

    Article  Google Scholar 

  27. Wamhoff H, Lichtenthaler L (1978) Heterocyclische \(\beta \)-enaminoester, 22: pyrido[2,3-\(d\)]pyrimidine aus 2-amino-3-etho- xycarbonyl-1,4,5,6-tetrahydropyridin und isocyanaten, isothiocyanaten, imidsäureestern, formamid und lactimethern. Chem Ber 111:2297–2306. doi:10.1002/cber.19781110625

  28. Wamhoff H (1985) Advances in heterocycles chemistry: heterocycles, b-enamino esters, versatile synthons in heterocyclic synthesis. Academic Press, Orlando

    Google Scholar 

  29. Cardile V, Lombardo L, Granata G, Perdicaro A, Balazy M, Santagati A (2009) Inhibition of iNOS and COX-2 in human whole blood ex vivo and monocyte-macrophage J774 cells by a new group of aminothiopyrimidone derivatives. Bioorg Med Chem 17:1991–1996. doi:10.1016/j.bmc.2009.01.029

    Article  PubMed  CAS  Google Scholar 

  30. Cardile V, Frasca G, Rizza L, Rapisarda P, Bonina F (2010) Antiinflammatory effects of a red orange extract in human keratinocytes treated with interferon-gamma and histamine. Phytother Res 24:414–418. doi:10.1002/ptr.2973

    Article  PubMed  CAS  Google Scholar 

  31. Gewald K, Schinke E, Bottcher H (1996) 2-Amino-thiophene aus methylenaktiven nitrilen, carbonylverbindungen und scwefel. Chem Ber 99:94–100

    Article  Google Scholar 

  32. Elslager E, Jacob P, Werbel L (1972) Folate antagonists. 6. Synthesis and antimalarial effects of fused 2,4-diaminothieno[2,3-d]pyrimidine(1–3). J Heterocycl Chem 11:775–782. doi:10.1002/jhet.5570090403

    Article  Google Scholar 

  33. Hayashi S, Sumi Ueno N (2011) Discovery of a novel COX-2 inhibitor as an orally potent anti-pyretic and anti-inflammatory drug: design, synthesis, and structure–activity relationship. Biochem Pharmacol 82:755–768. doi:10.1016/j.bcp.2011.06.036

    Article  PubMed  CAS  Google Scholar 

  34. Bondock S, Rabie R, Etman HA, Fadda AA (2008) Synthesis and antimicrobial activity of some new heterocycles incorporating antipyrine moiety. Eur J Med Chem 43:2122–2129. doi:10.1016/j.ejmech.2007.12.009

    Article  PubMed  CAS  Google Scholar 

  35. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, Gildehaus D, Miyashiro JM, Penning TD, Seibert K, Isakson PC, Stallings WC (1996) Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 384:644–648. ISSN: 0028–0836

    Google Scholar 

  36. Meade EA, Smith WL, DeWitt DL (1993) Differential inhibition of prostaglandin endoperoxide synthase (cyclooxygenase) isozymes by aspirin and other non-steroidal anti-inflammatory drugs. J Biol Chem 268:6610–6614. ISSN: 0021–9258

    Google Scholar 

  37. Ponpipom MM, Bugianesi RL, Robbins JC, Doebber TW, Shen TY (1981) Cell-specific ligands for selective drug delivery to tissues and organs. J Med Chem 24:1388–1395. doi:10.1021/jm00144a004

    Google Scholar 

  38. Hwang SB, Shen TY (1981) Membrane effects of antiinflammatory agents. 2. Interaction of nonsteroidal antiinflammatory drugs with liposome and purple membranes. J Med Chem 24:1202–1211. doi:10.1021/jm00142a016

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venera Cardile.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barone, M., Graziano, A.C.E., Marrazzo, A. et al. Synthesis and biological evaluation of new benzo-thieno[3,2-d]pyrimidin-4-one sulphonamide thio-derivatives as potential selective cyclooxygenase-2 inhibitors. Mol Divers 17, 445–458 (2013). https://doi.org/10.1007/s11030-013-9443-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9443-0

Keywords

Navigation