Skip to main content
Log in

Optimizing lactose hydrolysis by computer-guided modification of the catalytic site of a wild-type enzyme

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Lactose intolerance is a serious global health problem. A lactose hydrolysis enzyme, thermostable \(\upbeta \)-galactosidase, BgaB (from Geobacillus stearothermophilus) has attracted the attention of industrial biologists because of its potential application in processing lactose-containing products. However, this enzyme experiences galactose product inhibition. Through homology modeling and molecular dynamics (MD) simulation, we have identified the galactose binding sites in the thermostable \(\upbeta \)-galactosidase BgaB (BgaB). The binding sites are formed from Glu303, Asn310, Trp311, His354, Arg109, Phe341, Try272, Asn147, Glu148, and H354; these residues are all important for enzyme catalysis. A ligand–receptor binding model has been proposed to guide site-directed BgaB mutagenesis experiments. Based upon the model and the MD simulations, we recommend mutating Arg109, Phe341, Trp311, Asn147, Asn310, Try272, and His354 to reduce galactose product inhibition. In vitro site-directed mutagenesis experiments confirmed our predictions. The success rate for mutagenesis was 66.7 %. The best BgaB mutant, F341T, can hydrolyze lactose completely, and is the most promising enzyme for use by the dairy industry. Thus, our study is a successful example of optimizing enzyme catalytic chemical reaction by computer-guided modifying the catalytic site of a wild-type enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Park AR, Oh DK (2009) Galacto-oligosaccharide production using microbial beta-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 5:1279–1286. doi:10.1007/s00253-009-2356-2

    Google Scholar 

  2. Biswas S, Kayastha AM, Seckler R (2003) Purification and characterization of a thermostable beta-galactosidase from kidney beans (Phaseolus vulgaris L.) cv. PDR14. J Plant Physiol 4:327–337. doi:10.1078/0176-1617-00748

    Article  Google Scholar 

  3. Shukla TP (1975) Beta-galactosidase technology: a solution to the lactose problem. Crit Rev Food Technol 5:325–356

    Article  CAS  Google Scholar 

  4. Swagerty DL Jr, Walling AD, Klein RM (2002) Lactose intolerance. Am Fam Physician 9:1845–1850

    Google Scholar 

  5. Oliveira C, Guimaraes PM, Domingues L (2011) Recombinant microbial systems for improved beta-galactosidase production and biotechnological applications. Biotechnol Adv 6:600–609. doi:10.1016/j.biotechadv

    Article  Google Scholar 

  6. Shaikh SA, Khire JM, Khan MI (1999) Characterization of a thermostable extracellular beta-galactosidase from a thermophilic fungus Rhizomucor sp. Biochim Biophys Acta 1–2:314–322. doi:10.1016/S0304-4165(99)00138-5

    Article  Google Scholar 

  7. Hatzinikolaou DG, Katsifas E, Mamma D, Karagouni AD, Christakopoulos P, Kekos D (2005) Modeling of the simulatneous hydrolysis-ultrafiltration of whey permeate by a thermostable beta-galactosidase from Aspergillus niger. Biochem Eng J 2:309–316. doi:10.1016/j.bej.2005.02.011

    Google Scholar 

  8. Gosling A, Stevens GW, Barber AR, Kentish SEG, Gras SL (2010) Recent advances refining galactooligosaccharide production from lactose. Food Chem 121:307–318. doi:10.1016/j.foodchem.2009.12.063

    Article  CAS  Google Scholar 

  9. Park AR, Oh DK (2010) Galacto-oligosaccharide production using microbial beta-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 5:1279–1286. doi:10.1007/s00253-009-2356-2

    Article  Google Scholar 

  10. Mateo C, Monti R, Pessela BCC, Fuentes M, Torres R, Guisan JM, Fernandez-Lafuente R (2004) Immobilization of lactase from Kluyveromyces lactis greatly reduces the inhibition promoted by glucose. Full hydrolysis of lactose in milk. Biotechnol Prog 4:1259–1262. doi:10.1021/bp049957m

    Article  Google Scholar 

  11. Chen W, Chen H, Xia Y, Yang J, Zhao J, Tian F, Zhang H, PZhang H (2009) Immobilization of recombinant thermostable beta-galactosidase from Bacillus stearothermophilus for lactose hydrolysis in milk. J Dairy Sci 2:491–498. doi:10.3168/jds.2008-1618

    Article  Google Scholar 

  12. Petzelbauer I, Nidetzky B, Haltrich D, Kulbe KD (1999) Development of an ultra-high-temperature process for the enzymatic hydrolysis of lactose. I. The properties of two thermostable beta-glycosidases. Biotechnol Bioeng 3:322–332 doi:10.1002/(SICI)1097-0290(19990805)64:3<322::AID-BIT8>3.0.CO;2-9

    Google Scholar 

  13. Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 1:17–34. doi:10.1016/S0960-8524(03)00033-6

    Article  Google Scholar 

  14. Chen W, Chen H, Xia Y, Zhao J, Tian F, Zhang H (2008) Production, purification, and characterization of a potential thermostable galactosidase for milk lactose hydrolysis from Bacillus stearothermophilus. J Dairy Sci 5:1751–1758. doi:10.3168/jds.2007-617

    Article  Google Scholar 

  15. Hidaka M, Fushinobu S, Ohtsu N, Motoshima H, Matsuzawa H, Shoun H, Wakagi T (2002) Trimeric crystal structure of the glycoside hydrolase family 42 beta-galactosidase from Thermus thermophilus A4 and the structure of its complex with galactose. J Mol Biol 1:79–91. doi:10.1016/S0022-2836(02)00746-5

    Article  Google Scholar 

  16. Zhang N, Jiang YJ, Zou JW, Zhuang SL, Yu HX, Jin QS (2007) Insights into unbinding mechanisms upon two mutations investigated by molecular dynamics study of GSK3 beta–axin complex: role of packing hydrophobic residues. Proteins Struct Funct Bioinformatics 4:941–949. doi:10.1002/prot.21359

    Article  CAS  Google Scholar 

  17. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 16:1999–2012. doi:10.1002/jcc.10349

    Article  Google Scholar 

  18. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. doi:10.1063/1.448118

    Article  CAS  Google Scholar 

  19. Miyamoto S, Kollman PA (1992) Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:8952–8962

    Article  Google Scholar 

  20. de Souza ON, Ornstein RL (1999) Molecular dynamics simulations of a protein–protein dimer: particle-mesh Ewald electrostatic model yields far superior results to standard cutoff model. J Biomol Struct Dyn 6:1205–1223

    Article  Google Scholar 

  21. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 1(33–38):27–38. doi:10.1016/0263-7855(96)00018-5

    Google Scholar 

  22. Gui C, Zhu W, Chen G, Luo X, Liew OW, Puah CM, Chen K, Jiang H (2007) Understanding the regulation mechanisms of PAF receptor by agonists and antagonists: molecular modeling and molecular dynamics simulation studies. Proteins 1:41–52. doi:10.1002/prot.21213

    Article  Google Scholar 

  23. Bowie JU, Luthy R, Eisenberg D (1991) A method to identify protein sequences that fold into a known three-dimensional structure. Science 253:164–170. doi:10.1126/science.1853201

    Google Scholar 

  24. Laskowski RA, MacArthur M, Moss DS, Thornton JM (1993) Pro-check-a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/s0021889892009944

    Google Scholar 

  25. Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 9:853–859. doi:10.1016/S0969-2126(01)00220-9

    Article  Google Scholar 

  26. Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL, Woods RJ (2008) GLYCAM06: a generalizable biomolecular force field. Carbohydrates. J Comput Chem 4:622–655. doi:10.1002/jcc.20820

    Article  Google Scholar 

  27. Kollman PA, Massova I, Reyes C, Kuhn B, Huo S, Chong L, Lee M, Lee T, Duan Y, Wang W, Donini O, Cieplak P, Srinivasan J, Case D (2000) Calculating structures and free energies of complex molecules: combining molecular mechanics and continuum models. Acc Chem Res 12:889–897. doi:10.1021/ar000033j

    Article  Google Scholar 

  28. Wichapong K, Lawson M, Pianwanit S (2010) Postprocessing of protein–ligand docking poses using linear response MM-PB/SA: application to Wee1 kinase inhibitors. J Chem Inf Model 9:1574–1588. doi:10.1021/ci1002153

    Article  Google Scholar 

  29. Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98:1978–1988. doi:10.1021/j100058a043

    Google Scholar 

  30. Weiser J, Shenkin PS, Still WC (1999) Approximate atomic surfaces from linear combinations of pairwise overlaps (LCPO). J Comput Chem 2:217–230. doi:10.1002/(SICI)1096-987X(19990130)20:2<217:AID-JCC4>3.0.CO;2-A

    Google Scholar 

  31. Lu SY, Jiang YJ, Zou JW, Wu TX (2011) Molecular modeling and molecular dynamics simulation studies of the GSK3beta/ATP/substrate complex: understanding the unique P+4 primed phosphorylation specificity for GSK3beta substrates. J Chem Inf Model 51:1025–1036. doi:10.1021/ci100493j

    Google Scholar 

  32. Lee JH, Kim YS, Yeom SJ, Oh DK (2011) Characterization of a glycoside hydrolase family 42 beta-galactosidase from Deinococcus geothermalis. Biotechnol Lett 3:577–583. doi:10.1007/s10529-010-0459-6

    Article  Google Scholar 

  33. Shaikh FA, Mullegger J, He S, Withers SG (2007) Identification of the catalytic nucleophile in family 42 beta-galactosidases by intermediate trapping and peptide mapping: YesZ from Bacillus subtilis. FEBS Lett 13:2441–2446. doi:10.1016/j.febslet.2007.04.053

    Article  Google Scholar 

  34. Moreira IS, Fernandes PA, Ramos MJ (2006) Unraveling the importance of protein–protein interaction: application of a computational alanine-scanning mutagenesis to the study of the IgG1 streptococcal protein G (C2 fragment) complex. J Phys Chem B 22:10962–10969. doi:10.1021/jp054760d

    Article  Google Scholar 

  35. Hamza A, Tong M, AbdulHameed MDM, Liu JJ, Goren AC, Tai H (2010) Understanding microscopic binding of human microsomal prostaglandin E synthase-1 (mPGES-1) trimer with substrate PGH(2) and Cofactor GSH: insights from computational alanine scanning and site-directed mutagenesis. J Phys Chem B 16:5605–5616. doi:10.1021/jp100668y

    Article  Google Scholar 

  36. Dong YN, Liu XM, Chen HQ, Xia Y, Zhang HP, Zhang H, Chen W (2011) Enhancement of the hydrolysis activity of beta-galactosidase from Geobacillus stearothermophilus by saturation mutagenesis. J Dairy Sci 3:1176–1184. doi:10.3168/jds.2010-3775

    Article  Google Scholar 

  37. Xia Y, Zhao J, Chen H, Liu X, Wang Y, Tian F, Zhang HP, Zhang H, Chen W (2010) Extracellular secretion in Bacillus subtilis of a cytoplasmic thermostable \(\beta \)-galactosidase from Geobacillus stearothermophilus. J Dairy Sci 7:2838–2845. doi:10.3168/jds.2009-2864

    Google Scholar 

  38. Golicnik M (2005) Enzyme kinetics for 21st century biologists—does it make any sense? FEBS J 65

  39. Jacob A, Lancaster J, Buhler J, Harris B, Chamberlain RD (2008) Mercury BLASTP: accelerating protein sequence alignment. ACM Trans Reconfigurable Technol Syst 2:9

    Google Scholar 

  40. Osterberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 1:34–40. doi:10.1002/prot.10028

    Article  Google Scholar 

  41. Chan SL, Labute P (2010) Training a scoring function for the alignment of small molecules. J Chem Inf Model 9:1724–1735. doi:10.1021/ci100227h

    Article  Google Scholar 

  42. Henrissat BBA (1996) Updating the sequence based classification of glycosyl hydrolases. Biochem J 316:695–696

    Google Scholar 

  43. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (1996) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 11:5674. doi:10.1073/pnas.92.15.7090

  44. Mikami B, Adachi M, Kage T, Sarikaya E, Nanmori T, Shinke R, Utsumi S (1999) Structure of raw starch-digesting Bacillus cereus beta-amylase complexed with maltose. Biochemistry 22:7050–7061. doi:10.1021/bi9829377

    Article  Google Scholar 

  45. Ring M, Huber RE (1990) Multiple replacements establish the importance of tyrosine-503 in beta-galactosidase (Escherichia coli). Arch Biochem Biophys 2:342–350. doi:10.1016/0003-9861(90)90652-F

    Article  Google Scholar 

  46. Takagi H, Kobayashi C, Kobayashi S, Nakamori S (1999) PCR random mutagenesis into Escherichia coli serine acetyltransferase: isolation of the mutant enzymes that cause overproduction of L-cysteine and L-cystine due to the desensitization to feedback inhibition. FEBS Lett 3:323–327. doi:10.1016/S0014-5793(99)00679-1

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the Major Scientific and Technological Special Project of the Ministry of Science and Technology of China (2010ZX09102-305), the National Natural Science Foundation of China (31125021, 31171636), the National High Technology Research and Development Program of China (2011AA100905), and the Anhui provincial university natural science research Project (KJ2013B187)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haiqin Chen or Jun Xu.

Additional information

Ling Wang and Yi-Ning Dong contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (doc 1193 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, YN., Wang, L., Gu, Q. et al. Optimizing lactose hydrolysis by computer-guided modification of the catalytic site of a wild-type enzyme. Mol Divers 17, 371–382 (2013). https://doi.org/10.1007/s11030-013-9437-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-013-9437-y

Keywords

Navigation