Skip to main content
Log in

Silica-supported sulfonic acid-functionalized ionic liquid coated with [bmim][PF6] as a scavenger for the synthesis of amides

  • SI - SCS-09
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The methodology of using a silica gel-supported functionalized ionic liquid as a scavenger in the purification of parallel synthesis products was demonstrated. Silica-supported sulfonic acid-functional ionic liquid was synthesized by etherification, aminate, and quaternary aminate from activated silica gel and 3-chloropropyl trimethoxysilane, imidazole, and 1,4-butanesultone, which was followed by acidification using trifluoromethanesulfonic acid and anion exchange with potassium hexafluorophosphate. A conventional ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate was then used to coat the surface of the silica gel. The silica-supported functionalized ionic liquid was used as a scavenger in the removal of excess amine in the parallel synthesis of amides. Desired products were obtained in excellent yields and purity with a sequestration time of less than 100 min at room temperature. After scavenging, the scavenger was easily filtered out and regenerated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore JD, Byrne RJ, Vedantham P, Flynn DL, Hanson PR (2003) High-load, ROMP-generated oligomeric bis-acid chlorides: design of soluble and insoluble nucleophile scavengers. Org Lett 5: 4241–4244. doi:10.1021/ol0352759

    Article  PubMed  CAS  Google Scholar 

  2. Marsh A, Carlisle SJ, Smith SC (2001) High-loading scavenger resins for combinatorial chemistry. Tetrahedron Lett 42: 493–496. doi:10.1016/S0040-4039(00)01999-7

    Article  CAS  Google Scholar 

  3. Drewry DH, Coe DM, Poon S (1999) Solid-supported reagents in organic synthesis. Med Res Rev 19: 97–148. doi:10.1002/(SICI)1098-1128(199903)

    Article  PubMed  CAS  Google Scholar 

  4. Mahajan A, Chabra SR, Chan WC (1999) Resin-bound dendrimers as high loading supports for solid phase chemistry. Tetrahedron Lett 40: 4909–4912. doi:10.1016/S0040-4039(99)00908-9

    Article  CAS  Google Scholar 

  5. Bharathi P, Moore JS (1997) Solid-supported hyperbranched polymerization: evidence for self-limited grow. J Am Chem Soc 119: 3391–3392. doi:10.1021/ja9632062

    Article  CAS  Google Scholar 

  6. Parlow JJ, Mischke DA, Woodward SS (1997) Utility of complementary molecular reactivity and molecular recognition (CMR/R) technology and polymer-supported reagents in the solution-phase synthesis of heterocyclic carboxamides. J Org Chem 62: 5908–5919. doi:10.1021/jo970571i

    Article  CAS  Google Scholar 

  7. Swali V, Wells NJ, Langley GJ, Bradley M (1997) Solid-phase dendrimer synthesis and the generation of super-high-loading resin beads for combinatorial chemistry. J Org Chem 62: 4902–4903. doi:10.1021/jo9708654

    Article  CAS  Google Scholar 

  8. Palomo C, Aizpurua JM, Loinaz I, Fernandez-Berridi MJ, Irusta L (2001) Scavenging of fluorinated N,N′-dialkylureas by hydrogen binding: a novel separation method for fluorous synthesis. Org Lett 3: 2361–2364. doi:10.1021/ol016165

    Article  PubMed  CAS  Google Scholar 

  9. Werner S, Curran DP (2003) Fluorous dienophiles are powerful diene scavengers in Diels–Alder reactions. Org Lett 5: 3293–3296. doi:10.1021/ol035214a

    Article  PubMed  CAS  Google Scholar 

  10. Zhang W, Curran DP, Chen CHT (2002) Use of fluorous silica gel to separate fluorous thiol quenching derivatives in solution-phase parallel synthesis. Tetrahedron 58: 3871–3875. doi:10.1016/S0040-4020(02)00209-0

    Article  CAS  Google Scholar 

  11. Linclau B, Sing AK, Curran DP (1999) Organic-fluorous phase switches: a fluorous amine scavenger for purification in solution phase parallel synthesis. J Org Chem 64: 2835–2842. doi:10.1021/jo9823442

    Article  PubMed  CAS  Google Scholar 

  12. Moore JD, Herpel RH, Lichtsinn JR, Flynn DL, Hanson PR (2003) ROMP-generated oligomeric sulfonyl chlorides as versatile soluble scavenging agents. Org Lett 5: 105–107. doi:10.1021/ol0270273

    Article  PubMed  CAS  Google Scholar 

  13. Warmus JS, da Silva MI (2000) Polyaromatic scavenger reagents (PAHSR): a new methodology for rapid purification in solution-phase combinatorial synthesis. Org Lett 2: 1807–1809. doi:10.1021/ol005822f

    Article  PubMed  CAS  Google Scholar 

  14. Song GH, Cai YQ, Peng YQ (2005) Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatorial synthesis. J Comb Chem 7: 561–566. doi:10.1021/cc049844v

    Article  PubMed  CAS  Google Scholar 

  15. Cai YQ, Zhang Y, Peng YQ, Lu F, Huang XL, Song GH (2006) Carboxyl-functional ionic liquids as scavengers: case studies on benzyl chloride, amines, and methanesulfonyl chloride. J Comb Chem 8: 636–638. doi:10.1021/cc050167u

    Article  PubMed  CAS  Google Scholar 

  16. Mehnert CP, Cook RA, Dispenziere NC, Afeworki M (2002) Supported ionic liquid catalysis—a new concept for homogeneous hydroformylation catalysis. J Am Chem Soc 124: 12932–12933. doi:10.1021/ja0279242

    Article  PubMed  CAS  Google Scholar 

  17. Gruttadauria M, Riela S, Meo PL, D’Anna F, Noto R (2004) Supported ionic liquid asymmetric catalysis. A new method for chiral catalysts recycling. The case of proline-catalyzed aldol reaction. Tetrahedron Lett 45: 6113–6116. doi:10.1016/j.tetlet.2004.06.066

    Article  CAS  Google Scholar 

  18. Shi F, Zhang QH, Li DM, Deng YQ (2005) Silica-gel-confined ionic liquids: a new attempt for the development of supported nanoliquid catalysis. J Chem Eur 11: 5279–5288. doi:10.1002/chem.200500107

    Article  CAS  Google Scholar 

  19. Gu YL, Ogawa C, Kobayashi J, Mori Y, Kobayashi S (2006) A heterogeneous silica-supported scandium/ionic liquid catalyst system for organic reactions in water. Angew Chem 118: 7375–7378. doi:10.1002/ange.200603070

    Article  Google Scholar 

  20. Gu YL, Karam A, Jérôme F, Barrault J (2007) Selectivity enhancement of silica-supported sulfonic acid catalysts in water by coating of ionic liquid. Organic Lett 9: 3145–3148. doi:10.1021/ol071356j

    Article  CAS  Google Scholar 

  21. Tao T, Maciel GE (2000) Reactivities of silicas with organometallic methylating agents. J Am Chem Soc 122: 3118–3126. doi:10.1021/ja991950r

    Article  CAS  Google Scholar 

  22. Shimada T, Aoki K, Shinoda Y, Nakamura T, Tokunaga N, Inagaki S, Hayashi T (2003) Functionalization on silica gel with allylsilanes. A new method of covalent attachment of organic functional groups on silica gel. J Am Chem Soc 125: 4688–4689. doi:10.1021/ja034691l

    Article  PubMed  CAS  Google Scholar 

  23. Sasaki T, Zhong CM, Tada M, Iwasawa Y (2005) Immobilized metal ion-containing ionic liquids: preparation, structure and catalytic performance in Kharasch addition reaction. Chem Commun 2506–2508. doi:10.1039/b500349k

  24. Macquarrie DJ, Jackson DB, Mdoe JEM, Clark JH (1999) Organomodified hexagonal mesoporous silicates. New J Chem 23: 539–544. doi:10.1039/a900839j

    Article  CAS  Google Scholar 

  25. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 2399–2407 doi:10.1039/b107270f

  26. Wilkes JS (2002) A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem 4: 73–80. doi:10.1039/b110838g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gong-Hua Song.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 362 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, LQ., Cai, YQ., Peng, YQ. et al. Silica-supported sulfonic acid-functionalized ionic liquid coated with [bmim][PF6] as a scavenger for the synthesis of amides. Mol Divers 15, 109–113 (2011). https://doi.org/10.1007/s11030-010-9261-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-010-9261-6

Keywords

Navigation