Skip to main content
Log in

Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

The new European chemicals regulation Registration, Evaluation, Authorization and Restriction of Chemicals entered into force in June 2007 and accelerated the development of quantitative structure–activity relationship (QSAR) models for a variety of endpoints, including carcinogenicity. Here, we would like to present quantitative (continuous) and qualitative (categorical) models for non-congeneric chemicals for prediction of carcinogenic potency. A dataset of 805 substances was obtained after a preliminary screening of findings of rodent carcinogenicity for 1,481 chemicals accessible via Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network originated from the Lois Gold Carcinogenic Potency Database (CPDB). Twenty seven two-dimensional MDL descriptors were selected using Kohonen mapping and principal component analysis. The counter propagation artificial neural network (CP ANN) technique was applied. Quantitative models were developed exploring the relationship between the experimental and predicted carcinogenic potency expressed as a tumorgenic dose TD50 for rats. The obtained models showed low prediction power with correlation coefficient less than 0.5 for the test set. In the next step, qualitative models were developed. We found that the qualitative models exhibit good accuracy for the training set (92%). The model demonstrated good predicted performance for the test set. It was obtained accuracy (68%), sensitivity (73%), and specificity (63%). We believe that CP ANN method is a good in silico approach for modeling and predicting rodent carcinogenicity for non-congeneric chemicals and may find application for o ther toxicological endpoints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

REACH:

Registration, Evaluation, Authorization and Restriction of Chemicals

QSAR:

Quantitative structure–activity relationship

DSSTox:

Distributed Structure-Searchable Toxicity

CPDB:

Lois Gold Carcinogenic Potency Database

PCA:

Principal component analysis

CP ANN:

Counter propagation artificial neural network

TD50 :

Tumorgenic dose

References

  1. Benigni R (2005) Structure-activity relationship studies of chemical mutagens and carcinogens: mechanistic investigations and prediction approaches. Chem Rev 105: 1767–1800. doi:10.1021/cr030049y

    Article  PubMed  CAS  Google Scholar 

  2. OECD (2002) Guidance notes for analysis and evaluation of chronic toxicity and carcinogenicity studies. OECD Environment, Health and Safety Publications Series on Testing and Assessment No. 35, Paris, France

  3. Combes RD (2000) The use of structure-activity relationships and markers of cell toxicity to detect non-genotoxic carcinogens. Toxicol In Vitro 14: 387–399. doi:10.1016/S0887-2333(00)00026-6

    Article  PubMed  CAS  Google Scholar 

  4. Choy WN (2001) Genotoxic and non-genotoxic mechanisms of carcinogenesis. In: Choy WN (eds) Genetic toxicology and cancer risk assessment. Marcel Dekker, New York, pp 47–72

    Chapter  Google Scholar 

  5. Combes R, Grindon C, Cronin MTD, Roberts DW, Garrod JF (2007) Proposed integrated decision-tree testing strategies for mutagenicity and carcinogenicity in relation to the EU REACH Legislation. ATLA 35: 267–287

    PubMed  CAS  Google Scholar 

  6. Fenech M (2000) The in vitro micronucleus technique. Mutat Res Fundam Mol Mech Mutagen 455: 81–95. doi:10.1016/S0027-5107(00)00065-8

    Article  CAS  Google Scholar 

  7. Bernauer U, Oberemm A, Madle S, Gundert-Remy U (2005) The use of in vitro data in risk assessment. Basic Clin Pharmacol Toxicol 96: 176–181. doi:10.1111/j.1742-7843.2005.pto960306.x

    Article  PubMed  CAS  Google Scholar 

  8. Knight A, Bailey J, Balcombe J (2006) Animal carcinogenicity studies: implications for the REACH systems. ATLA 34(Suppl 1): 139–147

    PubMed  CAS  Google Scholar 

  9. Omenn GS (1995) Assessing the risk assessment paradigm. Toxicology 102: 23–28. doi:10.1016/0300-483X(95)03034-D

    Article  PubMed  CAS  Google Scholar 

  10. Long ME (2007) Predicting carcinogenicity in humans: the need to supplement animal-based toxicology. AATEX 14: 553–559

    Google Scholar 

  11. Helma C (eds) (2005) Predictive toxicology. Marcel Dekker, New York

    Google Scholar 

  12. Kuschner M (1995) The relevance of rodent tumors in assessing carcinogenicity in human beings. Regul Toxicol Pharmacol 21: 250–251. doi:10.1006/rtph.1995.1037

    Article  PubMed  CAS  Google Scholar 

  13. IARC (2006) Preamble, IARC monographs on the evaluation of carcinogenic risks to humans

  14. OECD (1981) Guidelines for the testing of chemicals test no. 451: carcinogenicity studies

  15. OECD (1981) Guidelines for the testing of chemicals test no. 452: chronic toxicity studies

  16. OECD (1981) Guidelines for the testing of chemicals test no. 453: combined chronic toxicity/carcinogenicity studies

  17. Benigni R, Giuliani A (2003) Putting the predictive toxicology challenge into perspective: reflections on the results. Bioinformatics 19: 1194–1200. doi:10.1093/bioinformatics/btg099

    Article  PubMed  CAS  Google Scholar 

  18. Richard AM, Benigni R (2002) AI and SAR approaches for predicting chemical carcinogenicity: survey and status report. SAR QSAR Environ Res 13: 1–19. doi:10.1080/10629360290002055

    Article  CAS  Google Scholar 

  19. Benigni R, Bossa C (2008) Structure alerts for carcinogenicity, and the Salmonella assay system: a novel insight through the chemical relational databases technology. Mutat Res 659: 248–261. doi:10.1016/j.mrrev.2008.05.003

    Article  PubMed  CAS  Google Scholar 

  20. Lill MA (2007) Multi-dimensional QSAR in drug discovery. Drug Discov Today 12: 1013–1017. doi:10.1016/j.drudis.2007.08.004

    Article  PubMed  CAS  Google Scholar 

  21. Kruhlak NL, Contrera JF, Benz RD, Matthews EJ (2007) Progress in QSAR toxicity screening of pharmaceutical impurities and other FDA regulated products. Adv Drug Deliv Rev 59: 43–55. doi:10.1016/j.addr.2006.10.008

    Article  PubMed  CAS  Google Scholar 

  22. Mager DE (2006) Quantitative structure—pharmacokinetic/pharmacodynamic relationships. Adv Drug Deliv Rev 58: 1326–1356. doi:10.1016/j.addr.2006.08.002

    Article  PubMed  CAS  Google Scholar 

  23. Oprea TI, Matter H (2004) Integrating virtual screening in lead discovery. Curr Opin Chem Biol 8: 349–358. doi:10.1016/j.cbpa.2004.06.008

    Article  PubMed  CAS  Google Scholar 

  24. Fjodorova N, Novich M, Vrachko M, Smirnov V, Kharchevnikova N, Zholdakova Z, Novikov S, Skvortsova N, Filimonov D, Poroikov V, Benfenati E (2008) Directions in QSAR modeling for regulatory uses in OECD member countries EU and in Russia. J Environ Sci Health C 26: 201–236. doi:10.1080/10590500802135578

    Article  Google Scholar 

  25. Fjodorova N, Novich M, Vrachko M, Kharchevnikova N, Zholdakova Z, Sinitsyna O, Benfenati E (2008) Regulatory assessment of chemicals within OECD member countries, EU and in Russia. J Environ Sci Health C 26: 40–88. doi:10.1080/10590500801907365

    Article  CAS  Google Scholar 

  26. Benigni R, Giuliani A, Franke R, Gruska A (2000) Quantitative structure-activity relationships of mutagenic and carcinogenic aromatic amines. Chem Rev 100: 3697–3714. doi:10.1021/cr9901079

    Article  PubMed  CAS  Google Scholar 

  27. Benigni R, Bossa C, Netzeva T, Worth A (2007) Collection and evaluation of (Q)SAR Models for Mutagenicity and Carcinogenicity. European Commission Directorate General Joint Research Centre 2007 EUR 22772EN © European Communities

  28. Patlewicz G, Rodford R, Walker JD (2003) Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity. Environ Toxicol Chem 22: 1885–1893. doi:10.1897/01-461

    Article  PubMed  CAS  Google Scholar 

  29. Helguera AM, Perez MCA, Combes RD, González MP (2005) The prediction of carcinogenicity from molecular structure. Curr Comput Aided Drug Des 1: 237–255. doi:10.2174/1573409054367655

    Article  CAS  Google Scholar 

  30. Morales Helguera A, Cabrera Perez MA, Perez González M, Molina Ruiz R, Gonzalez-Diaz H (2005) A topological substructural approach applied to the computational prediction of rodent carcinogenicity. Bioorg Med Chem 13: 2477–2488. doi:10.1016/j.bmc.2005.01.035

    Article  CAS  Google Scholar 

  31. Franke R, Gruska A, Giuliani A, Benigni R (2001) Prediction of rodent carcinogenicity of aromatic amines: a quantitative structure-activity relationships model. Carcinogenesis 22: 1561–1571. doi:10.1093/carcin/22.9.1561

    Article  PubMed  CAS  Google Scholar 

  32. Gini G, Lorenzini M, Benfenati E, Grasso P, Bruschi M (1999) Predictive carcinogenicity: a model for aromatic compounds, with nitrogen-containing substituents, based on molecular descriptors using an artificial neural network. J Chem Inf Comput Sci 39: 1076–1080. doi:10.1021/ci9903096

    PubMed  CAS  Google Scholar 

  33. Helguera Morales A, Cabrera Pérez MA, Combes RD, Pérez González M (2006) Quantitative structure-activity relationships for the computational prediction of nitrocompounds carcinogenicity. Toxicology 220: 51–62. doi:10.1016/j.tox.2005.11.024

    Article  CAS  Google Scholar 

  34. Zhang L, Sannes K, Shusterman AJ, Hansch C (1992) The structure-activity relationships of skin carcinogenicity of aromatic hydrocarbons and heterocycles. Chem Biol Interact 81: 149–180. doi:10.1016/0009-2797(92)90032-G

    Article  PubMed  CAS  Google Scholar 

  35. Villemin D, Cherqaoui D, Mesbah A (1994) Predicting carcinogenicity of polycyclic aromatic hydrocarbons from back-propagation neural network. J Chem Inf Comput Sci 34: 1288–1293. doi:10.1021/ci00022a010

    CAS  Google Scholar 

  36. Richard AM, Woo YT (1990) A CASE-SAR analysis of polycyclic aromatic hydrocarbon carcinogenicity. Mutat Res 242: 285–303. doi:10.1016/0165-1218(90)90047-6

    Article  PubMed  CAS  Google Scholar 

  37. Passerini L (2003) QSARs for individual classis of chemical mutagens and carcinogens. In: Benigni R (eds) Quantitative structure-activity relationship (QSARs). Models of mutagens and carcinogens. CRC Press, Boca Raton, pp 81–123

    Google Scholar 

  38. Benigni R (eds) (2003) Quantitative structure-activity relationship (QSAR) models of mutagens and carcinogens. CRC Press, Boca Raton, pp 88–144

    Google Scholar 

  39. Contrera JF, Matthews EJ, Benz RD (2003) Prediction the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices. Regul Toxicol Pharmacol 38: 243–259. doi:10.1016/S0273-2300(03)00071-0

    Article  PubMed  CAS  Google Scholar 

  40. Loew GH, Poulsen M, Kirkjian E, Ferrell J, Sudhindra BS, Rebagliati M (1985) Computer-assisted mechanistic structure-activity studies: application to diverse classes of chemical carcinogens. Environ Health Perspect 61: 69–96. doi:10.2307/3430063

    Article  PubMed  CAS  Google Scholar 

  41. Vračko M (1997) A study of structure-carcinogenic potency relationship with artificial neural networks. The using of descriptors related to geometrical and electronic structures. J Chem Inf Comput Sci 37: 1037–1043. doi:10.1021/ci970231y

    Google Scholar 

  42. Klopman G, Chakravarti SK, Zhu H, Ivanov JM, Saiakhov RD (2004) ESP: a method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases. J Chem Inf Comput Sci 44: 704–715. doi:10.1021/ci030298n

    PubMed  CAS  Google Scholar 

  43. Klopman G, Ivanov J, Saiakhov R, Chakravarti S (2005) MC4PC-An artificial intelligence approach to the discovery of quantitative structure-toxic activity relationship. In: Helma C (eds) Predictive toxicology. CRC Press, Boca Raton, pp 423–457

    Google Scholar 

  44. Matthews EJ, Contrera JF (1998) A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASEQSAR-ES software. Regul Toxicol Pharmacol 28: 242–264. doi:10.1006/rtph.1998.1259

    Article  PubMed  CAS  Google Scholar 

  45. Woo Y-T, Lai DY (2005) OncoLogic: a mechanism-based expert system for predicting the carcinogenic potential of chemicals. In: Helma C (eds) Predictive toxicology. CRC Press, Boca Raton, pp 385–413

    Google Scholar 

  46. Lagunin AA, Dearden JC, Filimonov DA, Poroikov VV (2005) Computer-aided rodent carcinogenicity prediction. Mutat Res 586: 138–146. doi:10.1016/j.mrgentox.2005.06.005

    PubMed  CAS  Google Scholar 

  47. Benfenati E, Gini G (1997) Computational predictive programs (expert systems) in toxicology. Toxicology 119: 213–225. doi:10.1016/S0300-483X(97)03631-7

    Article  PubMed  CAS  Google Scholar 

  48. Benigni R, Richard AM (1998) Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity. Methods 14: 264–276. doi:10.1006/meth.1998.0583

    Article  PubMed  CAS  Google Scholar 

  49. Richard AM (1998) Structure-based methods for predicting mutagenicity and carcinogenicity: are we there yet?. Mutat Res 400: 493–507. doi:10.1016/S0027-5107(98)00068-2

    PubMed  CAS  Google Scholar 

  50. Dearden JC, Barratt MD, Benigni R, Bristol DW, Combes RD, Cronin MTD, Judson PN, Payne MP, Richard AM, Tichy M, Worth AP, Yourick JJ (1997) The development and validation of expert systems for predicting toxicity. The report and recommendations of an ECVAM/ECB workshop (ECVAM Workshop 24). ATLA 25: 223–252

    Google Scholar 

  51. Klopman G (1992) MULTICASE 1. A hierarchical computer automated structure evaluation program. Quant Struct Act Relat 11: 176–184. doi:10.1002/qsar.19920110208

    Article  CAS  Google Scholar 

  52. Cunningham AR, Rosenkranz HS, Zhang YP, Klopman G (1998) Identification of “genotoxic” and “non-genotoxic” alerts for cancer in mice: the carcinogenicity potency data base. Mutat Res 398: 1–17. doi:10.1016/S0027-5107(97)00202-9

    PubMed  CAS  Google Scholar 

  53. Rosenkranz HS, Cunningham AR, Zhang YP, Claycamp HG, Macina OT, Sussman NB, Grant SG, Klopman G (1999) Development, characterization and application of predictive-toxicology models. SAR QSAR Environ Res 10: 277–298. doi:10.1080/10629369908039181

    Article  PubMed  CAS  Google Scholar 

  54. King RD, Srinivasan A (1996) A prediction of rodent carcinogenicity bioassays from molecular structure using inductive logic programming. Environ Health Perspect 104: 1031–1040

    Article  PubMed  CAS  Google Scholar 

  55. Perrotta A, Malacarne D, Taningher M, Pesenti R, Paolucci M, Parodi S (1996) A computerized connectivity approach for analyzing the structural basis of mutagenicity in Salmonella and its relationship with rodent carcinogenicity. Environ Mol Mutagen 28: 31–50. doi:10.1002/(SICI)1098-2280(1996)28:1<31::AID-EM7>3.0.CO;2-H

    Article  PubMed  CAS  Google Scholar 

  56. Clare MG, Lorenzon G, Akhurst LC, Marzin D, van Delft J, Montero R, Botta A, Bertens A, Cinelli S, Thybaud V, Lorge E (2006) SFTG international collaborative study on in vitro micronucleus test II. Using human lymphocytes. Mutat Res 607: 37–60. doi:10.1016/j.mrgentox.2006.04.001

    PubMed  CAS  Google Scholar 

  57. DiPaolo JA, Nelson RL, Donovan PJ (1971) Morphological, monogenic and carpological characteristics of Syrian hamster embryo cells transformed in vitro by carcinogenic polycyclic hydrocarbons. Cancer Res 31: 1118–1127

    PubMed  CAS  Google Scholar 

  58. Kirkland D, Aardema M, Henderson L, Müller L (2005) Evaluation of the ability of a battery of 3 in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictability. Mutat Res 584: 1–256. doi:10.1016/j.mrgentox.2005.10.002

    PubMed  CAS  Google Scholar 

  59. Kirsch-Volders M (2003) Report from the in vitro micronucleus assay working group. Mutat Res 540: 153–163. doi:10.1016/j.mrgentox.2003.07.005

    PubMed  CAS  Google Scholar 

  60. (2006) Animal and in vitro toxicity testing, in toxicity testing for assessment of environmental agents: interim report. National Academies Press, Washington, pp 26–70

    Google Scholar 

  61. ESAC (2006) Statement on the scientific validity of the in vitro micronucleus test as an alternative to the in vitro chromosome aberration assay for genotoxicity testing. Joint Research Centre, European Commission, 2 pp

  62. Gold LS, Zeiger E (eds) (1997) Handbook of carcinogenic potency and genotoxicity databases. CRC Press, Boca Raton

    Google Scholar 

  63. Hoshi M, Morimura K, Wanibuchi H, Wei M, Okochi E, Ushijima T, Takaoka K, Fukushima S (2004) No-observed effect levels for carcinogenicity and for in vivo mutagenicity of a genotoxic carcinogen. Toxicol Sci 81: 273–279. doi:10.1093/toxsci/kfh241

    Article  PubMed  CAS  Google Scholar 

  64. Zupan J, Gasteiger J (1999) Neural networks in chemistry and drug design, 2nd edn. Wiley-VCH Verlag GmbH, Weinheim

    Google Scholar 

  65. Hecht-Nielsen R (1987) Counter propagation networks. In: Caudill M, Butler C (eds) Proceedings of the IEEE first international conference on neural networks, vol 2. SOS Printing, San Diego, pp 19–32

  66. Zupan J, Novič M, Gasteiger J (1995) Neural networks with counter-propagation learning strategy used for modeling. Chemom Intell Lab Syst 27: 175–187. doi:10.10169-7439(94)00016-C

    Article  CAS  Google Scholar 

  67. Eric S, Solmajer T, Zupan J, Novič M, Oblak M, Agbaba D (2004) Prediction of selectivity of α 1-adrenergic antagonists by counter propagation neural network (CP-ANN). Il Farmaco 59: 389–395. doi:10.1016/j.farmac.2003.12.009

    Article  PubMed  CAS  Google Scholar 

  68. Novič M, Vračko M (2001) Comparison of spectrum-like representation of 3D chemical structure with other representations when used for modeling biological activity. Chemom Intell Lab Syst 59: 33–44. doi:10.1016/S0169-7439(01)00142-3

    Article  Google Scholar 

  69. Vračko M, Novič M, Zupan J (1999) Study of structure-toxicity relationship by a counter propagation neural network. Anal Chim Acta 384: 319–332. doi:10.1016/S0003-2670(98)00782-X

    Article  Google Scholar 

  70. Computer Assisted Evaluation of industrial chemical Substances According to Regulations (CAESAR) project, http://www.caesar-project.eu Accessed 22 April 2009

  71. Yeap SK, Walley RJ, Snarey M, van Hoorn WP, Mason JS (2007) Designing compound subsets: comparison of random and rational approaches using statistical simulation. J Chem Inf Model 47: 2149–2158. doi:10.1021/ci600382m

    Article  PubMed  CAS  Google Scholar 

  72. Leonard JT, Roy K (2006) On selection of training and test sets for the development of predictive QSAR models. QSAR Comb Sci 25: 235–251. doi:10.1002/qsar.200510161

    Article  CAS  Google Scholar 

  73. Schüürmann G, Kühne R, Kleint F, Ebert R-U, Rothenbacher C, Herth P (1997) A software system for automatic chemical property estimation from molecular structure. In: Chen F, Schüürmann G (eds) Quantitative structure-activity relationships in environmental sciences—VII. SETAC Press, Pensacola, pp 93–114

    Google Scholar 

  74. Schüürmann G, Ebert R-U, Nendza M, Dearden JC, Paschke A, Kühne R (2007) Prediction of fate-related compound properties. In: van Leeuwen K, Vermeire T (eds) Risk assessment of chemicals. An introduction. Springer Science, Dordrecht, pp 375–426

    Chapter  Google Scholar 

  75. Kier LB, Hall LH (1999) Molecular structure description: the electro topological state. Academic Press, New York

    Google Scholar 

  76. Kier LB, Hall LH (2001) Database organization and searching with E-state indices. SAR QSAR Environ Res 12: 55–74. doi:10.1080/10629360108035371

    Article  PubMed  CAS  Google Scholar 

  77. Kier LB, Hall LH (1999) The electro topological state: structure modeling for QSAR and database analysis. In: Devillers J, Balaban AT (eds) Topological indices and related descriptors in QSAR and QSPR. Gordon and Breach, Reading, pp 491–562

    Google Scholar 

  78. Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43: 59–69. doi:10.1007/BF00337288

    Article  Google Scholar 

  79. Kohonen T (1984) Self-organization and associative memory. Springer, Berlin

    Google Scholar 

  80. Kohonen T (2001) Self-organizing maps. Springer, Berlin

    Google Scholar 

  81. Vračko M (2005) Kohonen artificial neural network and counter propagation neural network in molecular structure-toxicity studies. Curr Comput Aided Drug Des 1: 73–78. doi:10.2174/1573409052952224

    Article  Google Scholar 

  82. Jezierska A, Vračko M, Basak SC (2004) Counter-propagation artificial neural network as a tool for the independent variable selection: structure-mutagenicity study on aromatic amines. Mol Divers 8: 371–377. doi:10.1023/B:MODI.0000047502.66802.3d

    Article  PubMed  CAS  Google Scholar 

  83. Roncaglioni A, Novič M, Vračko M, Benfenati E (2004) Classification of potential endocrine disrupters on the basis of molecular structure using a non-linear modeling method. J Chem Inf Comput Sci 44: 300–309. doi:10.1021/ci030421a

    PubMed  CAS  Google Scholar 

  84. Kirew DB, Chretien JR, Bernard P, Ros F (1998) Application of Kohonen Neural Networks in classification of biologically active compounds. SAR QSAR Environ Res 8: 93–107. doi:10.1080/10629369808033262

    Article  PubMed  CAS  Google Scholar 

  85. Dayhoff JE (1990) Neural network architectures: an introduction. Van Nostrand-Reinhold, New York

    Google Scholar 

  86. Cherkassky V, Friedman JH, Wechsler H (1994) From statistics to neural networks-theory and pattern recognition applications. Springer, Berlin

    Google Scholar 

  87. Grošelj N, van der Veer G, Tušar M, Vračko M, Novič M (2008) Verification of the geological origin of bottled mineral water using artificial neural networks. Food Chem. doi:10.1016/j.foodchem.2008.11.085

  88. Golbraikh A, Tropsha A (2002) Beware of q2!. J Mol Graph Model 20: 269–276. doi:10.1016/S1093-3263(01)00123-1

    Article  PubMed  CAS  Google Scholar 

  89. OECD (2004) Report from the expert group on (quantitative) structure-activity relationships ((Q)SARs) on the principles for the validation of (Q)SARs. OECD Environment Health and Safety Publications, Series on Testing and Assessment No. 49. Environment Directorate, OECD, Paris, France

  90. Jaworska JS, Comber M, Auer C, Van Leeuwen CJ (2003) Summary of a workshop on regulatory acceptance of (Q)SARs for human health and environmental endpoints. Environ Health Perspect 111: 1358–1360. doi:10.1289/ehp.5757

    Article  PubMed  Google Scholar 

  91. Benfenati E (ed) (2007) Quantitative structure-activity relationship (QSAR) of pesticide for regulatory purposes. Elsevier, The Netherlands

    Google Scholar 

  92. Cronin MTD, Jaworska JS, Walker JD, Comber MHI, Watts CD, Worth AP (2003) Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 111: 1391–1401. doi:10.1289/ehp.5759

    Article  PubMed  CAS  Google Scholar 

  93. Cooper JA, Saracci R, Cole P (1979) Describing the validity of carcinogen screening test. Br J Cancer 39: 87–89

    Article  PubMed  CAS  Google Scholar 

  94. Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  95. Jolliffe IT (2002) Principal component analysis, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  96. Kier LB (1986) Molecular connectivity in structure-activity analysis. Wiley, New York

    Google Scholar 

  97. Hall LH, Kier LB (1991) The molecular connectivity chi indices and kappa shape indexes in structure-property relations. In: Boyd D, Lipkowitz K (eds) Reviews of computational chemistry. VCH Publishers, Inc., pp 367–422

  98. Kellogg GE, Kier LB, Gaillard P, Hall LH (1996) E-state fields: applications to 3D QSAR. J Comput Aided Mol Des 10: 513–515. doi:10.1007/BF00134175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalja Fjodorova.

Electronic Supplementary Material

The Below is the Electronic Supplementary Material.

ESM 1 (DOC 1.45 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fjodorova, N., Vračko, M., Tušar, M. et al. Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses. Mol Divers 14, 581–594 (2010). https://doi.org/10.1007/s11030-009-9190-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9190-4

Keywords

Navigation