Skip to main content

In Silico Methods for Carcinogenicity Assessment

  • Protocol
  • First Online:
In Silico Methods for Predicting Drug Toxicity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1425))

Abstract

Screening compounds for potential carcinogenicity is of major importance for prevention of environmentally induced cancers. A large sequence of alternative predictive models, ranging from short-term biological assays (e.g. mutagenicity tests) to theoretical models, have been attempted in this field. Theoretical approaches such as (Q)SAR are highly desirable for identifying carcinogens, since they actively promote the replacement, reduction, and refinement of animal tests. This chapter reports and describes some of the most noted (Q)SAR models based on the human expert knowledge and statistically approach, aiming at predicting the carcinogenicity of chemicals. Additionally, the performance of the selected models has been evaluated and the results are interpreted in details by applying these prediction models to some pharmaceutical molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arcos JC (1995) Chemical induction of cancer: modulation and combination effects. An inventory of the many factors which influence carcinogenesis. Springer Science & Business Media, New York

    Google Scholar 

  2. Woo Y, Lai D (2003) Mechanisms of action of chemical carcinogens, and their role in Structure-Activity Relationships (SAR) analysis and risk assessment. In: Benigni R (ed) Quantitative Structure-Activity Relationship (QSAR) models of mutagens and carcinogens. CRC, Boca Raton, FL, pp 41–80

    Google Scholar 

  3. Miller J, Miller E (1977) Origins of human cancer. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 605–627

    Google Scholar 

  4. Miller EC, Miller JA (1981) Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 47(10):2327–2345

    Article  CAS  PubMed  Google Scholar 

  5. Ames BN (1979) Identifying environmental chemicals causing mutations and cancer. Science 204(4393):587–593

    Article  CAS  PubMed  Google Scholar 

  6. OECD Test No. 487: In Vitro Mammalian Cell Micronucleus Test. OECD Publishing

    Google Scholar 

  7. Benfenati E (2013) Theory, guidance and applications on QSAR and REACH. ORCHESTRA consortium

    Google Scholar 

  8. Dearden JC, Barratt MD, Benigni R, Bristol DW, Combes RD, Cronin MT, Judson PN, Payne MP, Richard AM, Tichy M (1997) The development and validation of expert systems for predicting toxicity. Workshop (ECVAM Workshop 24). p 2

    Google Scholar 

  9. Benigni R, Bossa C, Tcheremenskaia O, Giuliani A (2010) Alternatives to the carcinogenicity bioassay: in silico methods, and the in vitro and in vivo mutagenicity assays. Expert Opin Drug Metab Toxicol 6(7):809–819. doi:10.1517/17425255.2010.486400

    Article  CAS  PubMed  Google Scholar 

  10. Toropov AA, Toropova AP, Benfenati E (2009) Additive SMILES-based carcinogenicity models: probabilistic principles in the search for robust predictions. Int J Mol Sci 10(7):3106–3127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rositsa S, Mojca FG, Andrew W (2010) Review of QSAR models and software tools for predicting genotoxicity and carcinogenicity. JRC scientific and technical reports-EUR 24427 EN. Publications Office of the European Union, Luxembourg

    Google Scholar 

  12. Benfenati E, Benigni R, Demarini DM, Helma C, Kirkland D, Martin TM, Mazzatorta P, Ouédraogo-Arras G, Richard AM, Schilter B, Schoonen WG, Snyder RD, Yang C (2009) Predictive models for carcinogenicity and mutagenicity: frameworks, state-of-the-art, and perspectives. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27(2):57–90. doi:10.1080/10590500902885593

    Article  CAS  PubMed  Google Scholar 

  13. Ferrari T, Gini G, Benfenati E (2009) Support vector machines in the prediction of mutagenicity of chemical compounds. Proc NAFIPS 2009, June 14–17, Cincinnati, USA. pp 1–6

    Google Scholar 

  14. Ferrari T, Gini G, Bakhtyari NG, Benfenati E (2011) Mining toxicity structural alerts from SMILES: a new way to derive structure activity relationships. Computational Intelligence and Data Mining (CIDM), 2011 IEEE Symposium. pp 120–127. doi:10.1109/cidm.2011.5949444

  15. Toxtree v, Ideaconsult Ltd, Sofia BAahtsn

    Google Scholar 

  16. Woo Y-T, Lai DY, Argus MF, Arcos JC (1995) Development of structure-activity relationship rules for predicting carcinogenic potential of chemicals. Toxicol Lett 79(1):219–228

    Article  CAS  PubMed  Google Scholar 

  17. OECD (2010) OECD Toolbox. http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm. Accessed 20 June 2015

  18. Helma C (2006) Lazy structure-activity relationships (lazar) for the prediction of rodent carcinogenicity and Salmonella mutagenicity. Mol Divers 10(2):147–158

    Article  CAS  PubMed  Google Scholar 

  19. Klopman G, Rosenkranz HS (1994) Approaches to SAR in carcinogenesis and mutagenesis. Prediction of carcinogenicity/mutagenicity using MULTI-CASE. Mutat Res 305(1):33–46

    Article  CAS  PubMed  Google Scholar 

  20. Enslein K, Gombar VK, Blake BW (1994) Use of SAR in computer-assisted prediction of carcinogenicity and mutagenicity of chemicals by the TOPKAT program. Mutat Res 305(1):47–61

    Article  CAS  PubMed  Google Scholar 

  21. Smithing MP, Darvas F (1992) HazardExpert: an expert system for predicting chemical toxicity. ACS Symposium series American Chemical Society

    Google Scholar 

  22. Sanderson D, Earnshaw C (1991) Computer prediction of possible toxic action from chemical structure; the DEREK system. Hum Exp Toxicol 10(4):261–273

    Article  CAS  PubMed  Google Scholar 

  23. Ridings J, Barratt M, Cary R, Earnshaw C, Eggington C, Ellis M, Judson P, Langowski J, Marchant C, Payne M (1996) Computer prediction of possible toxic action from chemical structure: an update on the DEREK system. Toxicology 106(1):267–279

    Article  CAS  PubMed  Google Scholar 

  24. Helma C (2005) In silico predictive toxicology: the state-of-the-art and strategies to predict human health effects. Curr Opin Drug Discov Dev 8(1):27–31

    CAS  Google Scholar 

  25. Helma C, Cramer T, Kramer S, De Raedt L (2004) Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds. J Chem Inf Comput Sci 44(4):1402–1411. doi:10.1021/ci034254q

    Article  CAS  PubMed  Google Scholar 

  26. VEGA hwv-qe

    Google Scholar 

  27. Benigni R (2008) The Benigni/Bossa rulebase for mutagenicity and carcinogenicity—a module of Toxtree. JRC Scientific and Technical Reports, pp 1–78

    Google Scholar 

  28. ANTARES (2012) http://www.antares-life.eu/. Accessed 20 June 2015

  29. Chemical carcinogens structures and experimental data (ISSCAN) (2008) ISS. http://www.epa.gov/ncct/dsstox/sdf_isscan_external.html. Accessed 20 June 2015

  30. Kirkland D, Aardema M, Henderson L, Müller L (2005) Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens: I. Sensitivity, specificity and relative predictivity. Mutat Res 584(1):1–256

    Article  CAS  PubMed  Google Scholar 

  31. Mayer J, Cheeseman MA, Twaroski ML (2008) Structure-activity relationship analysis tools: validation and applicability in predicting carcinogens. Regul Toxicol Pharmacol 50(1):50–58. doi:10.1016/j.yrtph.2007.09.005

    Article  CAS  PubMed  Google Scholar 

  32. EPA Environmental Protection Agency. http://www.epa.gov/nrmrl/std/qsar/qsar.html. Accessed 20 June 2015

  33. IdeaConsult (2009) Toxtree user manual. IdeaConsult. https://eurl-ecvam.jrc.ec.europa.eu/laboratories-research/predictive_toxicology/doc/Toxtree_user_manual.pdf. Accessed 20 June 2015

  34. The Carcinogenic Potency Database (CPDB) B, CA (USA). http://potency.berkeley.edu

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadi Golbamaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Golbamaki, A., Benfenati, E. (2016). In Silico Methods for Carcinogenicity Assessment. In: Benfenati, E. (eds) In Silico Methods for Predicting Drug Toxicity. Methods in Molecular Biology, vol 1425. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3609-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3609-0_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3607-6

  • Online ISBN: 978-1-4939-3609-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics