Skip to main content

Advertisement

Log in

Synthesis, in vitro antitubercular activity and 3D-QSAR study of 1,4-dihydropyridines

  • Full-Length Paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

In continuation of our research program on new antitubercular agents, this article is a report of the synthesis of 97 various symmetrical, unsymmetrical, and N-substituted 1,4-dihydropyridines. The synthesized molecules were tested for their activity against M. tuberculosis H 37Rv strain with rifampin as the standard drug. The percentage inhibition was found in the range 3–93%. In an effort to understand the relationship between structure and activity, 3D-QSAR studies were also carried out on a subset that is representative of the molecules synthesized. For the generation of the QSAR models, a training set of 35 diverse molecules representing the synthesized molecules was utilized. The molecules were aligned using the atom-fit technique. The CoMFA and CoMSIA models generated on the molecules aligned by the atom-fit method show a correlation coefficient (r 2) of 0.98 and 0.95 with cross-validated r 2(q 2) of 0.56 and 0.62, respectively. The 3D-QSAR models were externally validated against a test set of 19 molecules (aligned previously with the training set) for which the predictive \({r^{2} (r^{2}_{\rm pred})}\) is recorded as 0.74 and 0.69 for the CoMFA and CoMSIA models, respectively. The models were checked for chance correlation through y-scrambling. The QSAR models revealed the importance of the conformational flexibility of the substituents in antitubercular activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Daffe M, Draper P (1998) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39: 131–203. doi:10.1016/S0065-2911(08)60016-8

    Article  CAS  PubMed  Google Scholar 

  2. Dolin PJ, Raviglione MC, Kochi A (1994) Global tuberculosis incidence and mortality during 1990–2000. Bull World Health Organ 72: 213–220

    CAS  PubMed  Google Scholar 

  3. Dye C, Scheele S, Dolin P, Pathania V, Raviglione MC (1999) Consensus statement. Global burden of tuberculosis: estimated incidence, prevalence, and mortality by country. WHO Global Surveillance and Monitoring Project. JAMA 282: 677–686. doi:10.1001/jama.282.7.677

    CAS  Google Scholar 

  4. Guerrin-Tran E, Thiolet JM, Rousseau C, Henry S, Poirier C, Che D, Vinas JM, Jarlier V, Robert J (2006) An evaluation of data quality in a network for surveillance of Mycobacterium tuberculosis resistance to antituberculosis drugs in Ile-de-France region-2001–2002. Eur J Epidemiol 21: 783–785. doi:10.1007/s10654-006-9069-y

    Article  CAS  PubMed  Google Scholar 

  5. Frieden TR, Sterling TR, Munsiff SS, Watt CJ, Dye C (2003) Tuberculosis. Lancet 362: 887–899. doi:10.1016/S0140-6736(03)14333-4

    Article  PubMed  Google Scholar 

  6. Blumberg HM, Burman WJ, Chaisson RE, Daley CL, Etkind SC, Friedman LN, Fujiwara P, Grzemska M, Hopewell PC, Iseman MD, Jasmer RM, Koppaka V, Menzies RI, O’Brien RJ, Reves RR, Reichman LB, Simone PM, Starke JR, Vernon AA (2003) American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America: treatment of tuberculosis. Am J Respir Crit Care Med 167: 603–662. doi:10.1164/rccm.167.4.603

    Article  PubMed  Google Scholar 

  7. Honerzu Bentrup K, Russell DG (2001) Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol 9: 597–605. doi:10.1016/S0966-842X(01)02238-7

    Article  CAS  Google Scholar 

  8. Saquib M, Gupta MK, Sagar R, Prabhakar YS, Shaw AK, Kumar R, Maulik PR, Gaikwad AN, Sinha S, Srivastava AK, Chaturvedi V, Srivastava R, Srivastava BS (2007) C-3 alkyl/arylalkyl-2,3-dideoxy hex-2-enopyranosides as antitubercular agents: synthesis, biological evaluation, and QSAR study. J Med Chem 50: 2942–2950. doi:10.1021/jm070110h

    Article  CAS  PubMed  Google Scholar 

  9. Kaufmann SH, van Embden JD (1993) Tuberculosis: a neglected disease strikes back. Trends Microbiol 1: 2–5. doi:10.1016/0966-842X(93)90015-J

    Article  CAS  PubMed  Google Scholar 

  10. Bloom BR, Murray CJ (1992) Tuberculosis: commentary on a reemergent killer. Science 257: 1055–1064. doi:10.1126/science.257.5073.1055

    Article  CAS  PubMed  Google Scholar 

  11. Fischl MA, Daikos GL, Uttamchandani RB, Poblete RB, Moreno JN, Reyes RR, Boota AM, Thompson LM, Cleary TJ, Oldham SA et al (1992) Clinical presentation and outcome of patients with HIV infection and tuberculosis caused by multiple-drug-resistant bacilli. Ann Intern Med 117: 184–190

    CAS  PubMed  Google Scholar 

  12. Maddry JA, Suling WJ, Reynolds RC (1996) Glycosyltransferases as targets for inhibition of cell wall synthesis in M. tuberculosis and M. avium. Res Microbiol 147: 106–112. doi:10.1016/0923-2508(96)80211-7

    Article  CAS  PubMed  Google Scholar 

  13. Reynolds RC, Bansal N, Rose J, Friedrich J, Suling WJ, Maddry JA (1999) Ethambutol-sugar hybrids as potential inhibitors of mycobacterial cell-wall biosynthesis. Carbohydr Res 317: 164–179. doi:10.1016/S0008-6215(99)00069-5

    Article  CAS  PubMed  Google Scholar 

  14. Jones PB, Parrish NM, Houston TA, Stapon A, Bansal NP, Dick JD, Townsend CA (2000) A new class of antituberculosis agents. J Med Chem 43: 3304–3314. doi:10.1021/jm000149l

    Article  CAS  PubMed  Google Scholar 

  15. Pasqualoto KF, Ferreira EI (2001) An approach for the rational design of new antituberculosis agents. Curr Drug Targets 2: 427–437. doi:10.2174/1389450013348227

    Article  CAS  PubMed  Google Scholar 

  16. Teodori E, Dei S, Scapecchi S, Gualtieri F (2002) The medicinal chemistry of multidrug resistance (MDR) reversing drugs. Farmaco 57: 385–415. doi:10.1016/S0014-827X(02)01229-6

    Article  CAS  PubMed  Google Scholar 

  17. Smith CV, Sharma V, Sacchettini JC (2004) TB drug discovery: addressing issues of persistence and resistance. Tuberculosis (Edinb) 84: 45–55. doi:10.1016/j.tube.2003.08.019

    Article  Google Scholar 

  18. Dodia N, Shah A (1999) Single step synthesis and antimicrobial and antitubercular screening of substituted 2,4-dihydroxyquinolines. Indian J Heterocycl Chem 9: 139–142

    CAS  Google Scholar 

  19. Dodia N, Shah A (2000) Synthesis and antitubercular study of some substituted 3-nitro and 3-bromo-4-hydroxy-2-quinolines. Indian J Heterocycl Chem 10: 69–70

    CAS  Google Scholar 

  20. Virsodia V, Pissurlenkar RR, Manvar D, Dholakia C, Adlakha P, Shah A, Coutinho EC (2008) Synthesis, screening for antitubercular activity and 3D-QSAR studies of substituted N-phenyl-6-methyl-2-oxo-4-phenyl-1, 2, 3, 4-tetrahydro-pyrimidine-5-carboxamides. Eur J Med Chem 43: 2103–2115. doi:10.1016/j.ejmech.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  21. Gaveriya H, Desai B, Vora V, Shah A (2002) Synthesis and antitubercular activity studies of some unsymmetrical 1,4-dihydropyridines. Indian J Pharm Sci 64: 59–62

    CAS  Google Scholar 

  22. Kharkar PS, Desai B, Gaveria H, Varu B, Loriya R, Naliapara Y, Shah A, Kulkarni VM (2002) Three-dimensional quantitative structure-activity relationship of 1,4-dihydropyridines as antitubercular agents. J Med Chem 45: 4858–4867. doi:10.1021/jm020217z

    Article  CAS  PubMed  Google Scholar 

  23. Mahendra M, Doreswamy BH, Shridhar MA, Prasad JS, Parecha AR, Patel JA, Manvar D, Dholaria K, Shah A (2006) Synthesis and structural conformation of N-substituted 1,4-dihyropyridine derivatives. Cryst Res Technol 41: 92–97. doi:10.1002/crat.200310539

    Article  CAS  Google Scholar 

  24. Sybyl 7.1, Tripos Inc., St. Louis, Missouri, USA

  25. Martin EJ, Blaney JM, Siani MA, Spellmeyer DC, Wong AK, Moos WH (1995) Measuring diversity: experimental design of combinatorial libraries for drug discovery. J Med Chem 38: 1431–1436. doi:10.1021/jm00009a003

    Article  CAS  PubMed  Google Scholar 

  26. CoMFA and QSAR Manual Sybyl 7.1, Associates Inc., USA

  27. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110: 5959–5967. doi:10.1021/ja00226a005

    Article  CAS  Google Scholar 

  28. Cramer RD 3rd, Patterson DE, Bunce JD (1989) Recent advances in comparative molecular field analysis (CoMFA). Prog Clin Biol Res 291: 161–165

    CAS  PubMed  Google Scholar 

  29. Klebe G (1998) Comparative molecular similarity indices analysis: CoMSIA. Perspect Drug Discov Des 12: 87–104. doi:10.1023/A:1017025803403

    Article  Google Scholar 

  30. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem 37: 4130–4146. doi:10.1021/jm00050a010

    Article  CAS  PubMed  Google Scholar 

  31. Bohm M, Strzebecher J, Klebe G (1999) Three-dimensional quantitative structure–activity relationship analyses using comparative molecular field analysis and comparative molecular similarity indices analysis to elucidate selectivity differences of inhibitors binding to trypsin, thrombin, and factor Xa. J Med Chem 42: 458–477. doi:10.1021/jm981062r

    Article  CAS  PubMed  Google Scholar 

  32. Wold S, Johansson E, Cocchi M (1993) 3D-QSAR in drug design: theory methods and applications. ESCOM Lieden, The Netherlands

    Google Scholar 

  33. Bush BL, Nachbar RB Jr (1993) Sample-distance partial least squares: PLS optimized for many variables, with application to CoMFA. J Comput Aided Mol Des 7: 587–619. doi:10.1007/BF00124364

    Article  CAS  PubMed  Google Scholar 

  34. Legar C, Romano JP, Politis DN (1992) Bootstrap technology and applications. Technometrics 34: 378–398. doi:10.2307/1268938

    Article  Google Scholar 

  35. Didziapetris R, Reynolds DP, Japertas P, Zmuidinavicius D, Petrauskas A (2006) In silico technology for identification of potentially toxic compounds in drug discovery. Curr Comput Aided Drug Des 2: 95–103. doi:10.2174/157340906777441708

    Article  CAS  Google Scholar 

  36. Zmuidinavicius D, Japertas P, Petrauskas A, Didziapetris R (2003) Progress in toxinformatics: the challenge of predicting acute toxicity. Curr Top Med Chem 3: 1301–1314. doi:10.2174/1568026033451989

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anamik K. Shah or Evans C. Coutinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manvar, A.T., Pissurlenkar, R.R.S., Virsodia, V.R. et al. Synthesis, in vitro antitubercular activity and 3D-QSAR study of 1,4-dihydropyridines. Mol Divers 14, 285–305 (2010). https://doi.org/10.1007/s11030-009-9162-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-009-9162-8

Keywords

Navigation