Skip to main content
Log in

Structure based studies of the adaptive diversification process of congerins

  • Review
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

The isoforms of a fish galectin, congerins I and II, have several features that make them suitable for a study of accelerated process of molecular diversification based on 3D structures: They have been generated by a gene duplication, and still maintain 47% amino acid sequence identity to each other. Their genes show very high K A/K S ratio, and are though to be components of fish defense system. The crystal systems for a high-resolution analysis are known for both proteins. A series of works with biochemistry, molecular biology, and X-ray crystallography techniques have suggested that the two proteins might have evolved under differential selection pressures. Congerin I appeared to be a stabilized version of galectin-1. Congerin II was shown to be adapted to a new carbohydrate-ligand. The 3D structures of the wild type and mutant proteins have revealed the probable cause and consequence of the selection pressure responsible for the diversification of congerins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

3D:

three dimensional

MES:

2-N-morpholino ethane sulfonic acid

PDB:

protein data bank

ML:

maximum likelihood

MP:

maximum parsimony

SE:

standard error

PCR:

polymerase chain reaction

References

  1. Barondes, S.H., Castronovo, V., Cooper, D.N.W., Cummings, R.D., Drickamer, K., Feizi, T., Gitt, M.A., Hirabayahi, J., Hughes, C., Kasai, K., Leffler, H., Liu, F., Lotan, R., Mercurio, A.M., Monsigny, M., Pillai, S., Poirer, F., Raz, A., Rigby, P.W.J., Rini, J.M. and Wang, J.L., Galectins: A family of animal β-galactoside-binding lectins, Cell., 76 (1994) 597–598.

    Article  CAS  Google Scholar 

  2. Barondes, S.H., Cooper, D.N., Gitt, M.A. and Leffler, H., Galectins. Structure and function of a large family of animal lectins, J. Biol. Chem., 269 (1994) 20807–20810.

    CAS  Google Scholar 

  3. Kasai, K. and Hirabayashi, J., Galectins: A family of animal lectins that decipher glycocodes, J. Biochem. (Tokyo), 119 (1996) 1–8.

    CAS  Google Scholar 

  4. Hughes, R.C., The galectin family of mammalian carbohydrate-binding molecules, Biochem. Soc. Trans., 25 (1997) 1194–1198.

    CAS  Google Scholar 

  5. Kamiya, H., Muramoto, K. and Goto, R., Purification and properties of agglutinins from conger eel, Conger myriaster (Brevoort), skin mucus, Dev. Comp. Immunol., 12 (1988) 309–318.

    Article  CAS  Google Scholar 

  6. Muramoto, K. and Kamiya, H., The amino-acid sequence of a lectin from conger eel, Conger myriaster, skin mucus, Biochim. Biophys. Acta, 1116 (1992) 129–136.

    CAS  Google Scholar 

  7. Muramoto, K., Kagawa, D., Sato, T., Ogawa, T., Nishida, Y. and Kamiya, H., Functional and structural characterization of multiple galectins from the skin mucus of conger eel, Conger myriaster, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 123 (1999) 33–45.

    Article  CAS  Google Scholar 

  8. Ogawa, T., Ishii, C., Kagawa, D., Muramoto, K. and Kamiya, H., Accelerated evolution in the protein-coding region of galectin cDNAs, congerin I and congerin II, from skin mucus of conger eel (Conger myriaster), Biosci. Biotechnol. Biochem., 63 (1999) 1203–1208.

    Article  CAS  Google Scholar 

  9. Ogawa, T., Ishii, C., Suda, Y., Kamiya, H. and Muramoto, K., High-level expression and characterization of fully active recombinant conger eel galectins in Escherichia coli, Biosci. Biotechnol. Biochem., 66 (2002) 476–480.

    Article  CAS  Google Scholar 

  10. Ogawa, T., Shirai, T., Shionyu-Mitsuyama, C., Yamane, T., Kamiya, H. and Muramoto, K., The speciation of conger eel galectins by rapid adaptive evolution, Glyco. J., 19 (2003) 451–458.

    Article  Google Scholar 

  11. Miyata, T. and Yasunaga, T., Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application, J. Mol. Evol., 16 (1980) 23–36.

    Article  CAS  Google Scholar 

  12. Nei, M. and Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol., 3 (1986) 418–426.

    CAS  Google Scholar 

  13. Hill, R.E. and Hastie, N.D., Accelerated evolution in the reactive centre regions of serine protease inhibitors, Nature, 326 (1987) 96–99.

    Article  CAS  Google Scholar 

  14. Hughes, A.L. and Nei, M., Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection, Nature, 335 (1988) 167–170.

    Article  CAS  Google Scholar 

  15. Nakashima, K., Ogawa, T., Oda, N., Hattori, M., Sakaki, Y., Kihara, H. and Ohno, M., Accelerated evolution of Thimeresurus falvoviridis venom gland phospholipase A2 isozymes, Proc. Natl. Acad. Sci. USA, 90 (1993) 5964–5968.

    Article  CAS  Google Scholar 

  16. Endo, T., Ikeo, K. and Gojobori, T., Large-scale search for genes on which positive selection may operate, Mol. Biol. Evol., 13 (1996) 685–690.

    CAS  Google Scholar 

  17. Sitnikova, T. and Nei, M., Evolution of immunoglobulin kappa chain variable genes in vertebrates, Mol. Biol. Evol., 15 (1998) 50–60.

    CAS  Google Scholar 

  18. Yang, Z. and Bielawski, J. P., Statistical methods for detecting molecular adaptation, Trends Ecol. Evol., 15 (2000) 496–503.

    Article  Google Scholar 

  19. Shirai, T., Mitsuyama, C., Niwa, Y., Matsui, Y., Hotta, H., Yamane, T., Kamiya, H., Ishii, C., Ogawa, T. and Muramoto, K., High-resolution structure of the conger eel galectin, congerin I, in lactose-liganded and ligand-free forms: Emergence of a new structure class by accelerated evolution, Structure Fold Des., 7 (1999) 1223–1233.

    Article  CAS  Google Scholar 

  20. Shirai, T., Matsui, Y., Shionyu-Mitsuyama, C., Yamane, T., Kamiya, H., Ishii, C., Ogawa, T. and Muramoto, K., Crystal structure of a conger eel galectin (congerin II) at 1.45A resolution: Implication for the accelerated evolution of a new ligand-binding site following gene duplication, J. Mol. Biol., 321 (2002) 879–889.

    Article  CAS  Google Scholar 

  21. Shionyu-Mitsuyama, C., Ito, Y., Konno, A., Miwa, Y., Ogawa, T., Muramoto, K. and Shirai, T., In vitro evolutionary thermostabilization of congerin II: A limited reproduction of natural protein evolution by artificial selection pressure, J. Mol. Biol., 347 (2005) 385–397.

    Article  CAS  Google Scholar 

  22. Lobsanov, Y.D., Gitt, M.A., Leffler, H., Barondes, S.H. and Rini, J.M., X-ray crystal structure of the human dimeric S-lac lectin, L-14-II, in complex with lactose at 2.9-Å resolution, J. Biol. Chem., 268 (1993) 27034–27038.

    CAS  Google Scholar 

  23. Liao, D., Kapadia, G., Ahmed, H., Vasta, G.R. and Herzberg, O., Structure of S-lectin, a developmentally regulated vertebrate β-galactoside-binding protein, Proc. Natl. Acad. Sci. USA, 91 (1994) 1428–1432.

    Article  CAS  Google Scholar 

  24. Bourne, Y., Bolgiano, B., Liao, D., Strecker, G., Cantau, P., Herzberg, O., Feizi, T. and Cambillau, C., Crosslinking of mammalian lectin (galectin-1) by complex biantennary saccharides, Nature Struct. Biol., 1 (1994) 863–870.

    Article  CAS  Google Scholar 

  25. Varela, P.F., Solis, D., Diaz-Maurino, T.G., Kaltner, H., Gabius, H.-J. and Romero, A., The 2.15 Å crystal structure of CG-16, the developmentally regulated homodimeric chicken galectin, J. Mol. Biol., 294 (1999) 537–549.

    Article  CAS  Google Scholar 

  26. Bianchet, M.A., Ahmed, H., Vasta, G.R. and Amzel, L.M., Soluble β-galactosyl-binding lectin (galectin) from toad ovary: Crystallographic studies of two protein-sugar complexes, Proteins, 40 (2000) 378–388.

    Article  CAS  Google Scholar 

  27. Shionyu-Mitsuyama, C., Shirai, T., Ishida, H., Yamane, T., An empirical approach for structure-based prediction of carbohydrate-binding sites on proteins, Protein. Engng., 16 (2003) 467–478.

    Article  CAS  Google Scholar 

  28. Walser, P.J., Haebel, P.W., Künzler, N., Sargent, D., Kües, U., Aebi, M. and Ban, N., Structure and functional analysis of the fungal galectin CGL2, Structure 12 (2004) 689–702.

  29. Ban, M., Yoon, H.-Y., Demirkan, E., Utsumi, S., Mikami, B. and Yagi, F., Structural basis of a fungal galectin from Agrocybe cylindracea for recognizing sialoconjugate, 351 (2005) 695–706.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Shirai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shirai, T., Shionyu-Mitsuyama, C., Ogawa, T. et al. Structure based studies of the adaptive diversification process of congerins. Mol Divers 10, 567–573 (2006). https://doi.org/10.1007/s11030-006-9030-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-006-9030-8

Key words

Navigation