Skip to main content
Log in

Fish growth hormone genes: Divergence of coding sequences in salmonid fishes

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Comparison of coding nucleotide sequences of the paralogous GH1 and GH2 genes, as well as of the growth hormone amino acid sequences, in the species of closely related salmonid genera Salvelinus, Oncorhynchus, and Salmo was performed. It was demonstrated that, in different groups of salmonids, the amino acid substitution rates were considerably different. In some cases, an obvious discrepancy between the divergence of growth hormone genes and phylogenetic schemes based on other methods and approaches was revealed. These findings suggest that the reason may be multidirectional selection at duplicated genes at different stages of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Otto, S.P. and Whitton, J., Polyploid incidence and evolution, Ann. Rev. Genet., 2000, vol. 34, pp. 401–437. doi 10.1146/annurev.genet.34.1.401

    Article  CAS  PubMed  Google Scholar 

  2. Koop, B.F. and Davidson, W.S., Genomics and genome duplication in salmonids, in Fisheries for Global Welfare and Environment (Proc. 5th World Fisheries Congress), Tsukamoto, K., Kawamura, R., Takeuchi, T., Beard, T.D., and Kaser. M.J., Eds., Tokyo: Terrpub, 2008, pp. 77–86.

  3. Zhang, J., Evolution by gene duplication: an update, Trends Ecol. Evol., 2003, vol. 18, no. 6, pp. 292–298. doi 10.1016/S0169-5347(03)00033-8

    Article  Google Scholar 

  4. Ohno, S., Evolution by Gene Duplication, New York: Springer-Verlag, 1970. doi 10.1007/978-3-642-86659-3

  5. Robinson-Rechavi, M. and Laudet, V., Evolutionary rates of duplicate genes in fish and mammals, Mol. Biol. Evol., 2001, vol. 18, no. 4, pp. 681–683.

    Article  CAS  PubMed  Google Scholar 

  6. Volff, J.-N., Genome evolution and biodiversity in teleostean fish, Heredity, 2005, vol. 94, pp. 280–294. doi 10.1038/sj.hdy.6800635

    Article  CAS  PubMed  Google Scholar 

  7. Wittbrodt, J., Meyer, A., and Schartl, M., More genes in fish?, BioEssays, 1998, vol. 20, pp. 511–515. doi 10.1002/(SICI)1521-1878(199806)20:6<511::AID-BIES10> 3.0.CO;2-3

    Article  Google Scholar 

  8. Le Comber, S.C. and Smith, C., Polyploidy in fishes: patterns and process, Biol. J. Linn. Soc., 2004, vol. 82, pp. 431–442. doi 10.1111/j.1095-8312.2004.00330.x

    Article  Google Scholar 

  9. Meyer, A. and Van de Peer, Y., From 2R to 3R: evidence for a fish-specific genome duplication (FSGD), BioEssays, 2005, vol. 27, pp. 937–945. doi 10.1002/bies.20293

    Article  CAS  PubMed  Google Scholar 

  10. Santini, F., Harmon, L.J., Carnevale, G., and Alfaro, M.E., Did genome duplication drive the origin of teleosts? A comparative study of diversification in ray-finned fishes, BMC Evol. Biol., 2009, vol. 9, p. 194. doi 10.1186/1471-2148-9-194

    Article  PubMed  PubMed Central  Google Scholar 

  11. Macqueen, D.J., Garsia de la Serrana, D., and Johnston, I.A., Evolution of ancient functions in the vertebrate insulin-like growth factor system uncovered by study of duplicated salmonid fish genomes, Mol. Biol. Evol., 2013, vol. 30, no. 5, pp. 1060–1076. Epub doi 10.1093/molbev/mst017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Devlin, R., Sequence of sockeye type 1 and 2 growth hormone genes and the relationships of rainbow trout with Atlantic and Pacific salmon, Can. J. Fish. Aquat. Sci., 1993, vol. 50, pp. 1738–1748. doi 10.1139/f93-195

    Article  CAS  Google Scholar 

  13. Kawauchi, H., Moriyama, S., Yasuda, A., et al., Isolation and characterization of chum salmon growth hormone, Arch. Biochem. Biophys., 1986, vol. 244, no. 2, pp. 542–552. doi 10.1016/0003-9861(86)90622-3

    Article  CAS  PubMed  Google Scholar 

  14. Rentier-Delrue, F., Swennen, D., Mercier, L., et al., Molecular cloning and characterization of two forms of trout growth hormone cDNA: expression and secretion of tGH-II by Escherichia coli, DNA, 1989, vol. 8, no. 2, pp. 109–117. doi 10.1089/dna.1.1989.8.109

    Article  CAS  PubMed  Google Scholar 

  15. Von Schalburg, K.R., Yazawa, R., de Boer, J., et al., Isolation, characterization and comparison of Atlantic and Chinook salmon growth hormone 1 and 2, BMC Genomics, 2008, vol. 9, p. 223. doi 10.1186/1471-2164- 9-223

    Google Scholar 

  16. Du, S.J., Devlin, R.H., and Hew, C.L., Genomic structure of growth hormone genes in Chinook salmon (Oncorhynchus tshawytscha): presence of two functional genes, GH-I and GH-II and a male specific pseudogene, GH-ψ, DNA Cell Biol., 1993, vol. 12, pp. 739–751. doi 10.1089/dna.1993.12.739

    CAS  Google Scholar 

  17. Bart, H.L., Reneau, P.C., Doosey, M.H., and Bell, C.D., Evolutionary divergence of duplicate copies of the growth hormone gene in suckers (Actinopterigii: Catostomidae), Int. J. Mol. Sci., 2010, vol. 11, pp. 1099–1102. doi 10.3390/ijms11031090

    Google Scholar 

  18. Rajesh, R. and Majumdar, K.C., A comparative account of the structure of the growth hormone encoding gene and genetic interrelationship in sex species of the genus Labeo, Fish Physiol. Biochem., 2007, vol. 33, pp. 311–333. doi 10.1007/s10695-007-9164-3

    Article  CAS  Google Scholar 

  19. Ryynänen, H.J. and Primmer, C.R., Varying signals of the effects of natural selection during teleost growth hormone gene evolution, Genome, 2006, vol. 49, pp. 42–53. doi 10.1139/g05-079

    Article  PubMed  Google Scholar 

  20. Kamenskaya, D.N., Pan’kova, M.V., Atopkin, D.M., and Brykov, V.A., Fish growth-hormone genes: evidence of functionality of paralogous genes in Levanidov’s charr Salvelinus levanidovi, Mol. Biol. (Moscow), 2015, vol. 49, no. 5, pp. 687–693. doi 10.7868/S0026898415050092

    Article  CAS  Google Scholar 

  21. Swofford, D.L., PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4, Sunderland, Massachusetts: Sinauer Associates, 2002. doi 10.1111/j.0014-3820.2002.tb00191.x

    Google Scholar 

  22. Huelsenbeck, J.P. and Ronquist, F., MRBAYES: Bayesian inference of phylogeny, Bioinformatics, 2001, vol. 17, pp. 754–755. doi 10.1093/bioinformatics/17.8.754

    Article  CAS  PubMed  Google Scholar 

  23. Ronquist, F. and Huelsenbeck, J.P., MRBAYES 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, 2003, vol. 19, pp. 1572–1574. doi 10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  24. Felsenstein, J., Confidence limits on phylogenies: an approach using the bootstrap, Evolution, 1985, vol. 39, pp. 783–791. doi 10.2307/2408678

    Article  Google Scholar 

  25. Posada, D. and Crandall, K.A., Modeltest: testing the model of DNA substitution, Bioinformatics, 1998, vol. 14, no. 9, pp. 817–818. doi 10.1093/bioinformatics/14.9.817

    Article  CAS  PubMed  Google Scholar 

  26. Tamura, K., Peterson, D., Peterson, N., et al., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol., 2011, vol. 28, pp. 2731–2739. doi 10.1093/molbev/msr121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Nei, M. and Gojobori, T., Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions, Mol. Biol. Evol., 1986, vol. 3, no. 5, pp. 418–426.

    CAS  PubMed  Google Scholar 

  28. Kosakovsky Pond, S.L. and Frost, S.D.W., Not so different after all: a comparison of methods for detecting amino acid sites under selection, Mol. Biol. Evol., 2005, vol. 22, no. 5, pp. 1208–1222. doi 10.1093/molbev/msi105

    Article  PubMed  Google Scholar 

  29. Kosakovsky Pond, S.L. and Frost, S.D.W., A genetic algorithm approach to detecting lineage-specific variation in selection pressure, Mol. Biol. Evol., 2005, vol. 22, no. 3, pp. 478–485. doi 10.1093/molbev/msi031

    Article  Google Scholar 

  30. Agellon, L.B. and Chen, T.T., Rainbow trout growth hormone: molecular cloning of cDNA and expression in Escherichia coli, DNA, 1986, vol. 5, no. 6, pp. 463–471. doi 10.1089/dna.1.1986.5.463

    Article  CAS  PubMed  Google Scholar 

  31. Agellon, L.B., Davies, S.L., Chen, T.T., and Powers, D.A., Structure of a fish (rainbow trout) growth hormone gene and its evolutionary implications, Proc. Natl. Acad. Sci. U.S.A., 1988, vol. 85, pp. 5136–5140. doi 10.1073/pnas.85.14.5136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Forbes, S.H., Knudsen, K.L., North, T.W., and Allendorf, F.W., One of two growth hormone genes in coho salmon is sex-linked, Proc. Natl. Acad. Sci. U.S.A., 1994, vol. 91, no. 5, pp. 1628–1631. doi 10.1073/pnas.91.5.1628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Johansen, B., Johnsen, O.C., and Valla, S., The complete nucleotide sequence of the growth-hormone gene from Atlantic salmon (Salmo salar), Gene, 1989, vol. 77, pp. 317–324. doi 10.1016/0378-1119(89)90079-6

    Article  CAS  PubMed  Google Scholar 

  34. Male, R., Nerland, A.N., Lorens, J.B., et al., The complete nucleotide sequence of the Atlantic salmon growth hormone I gene, Biochim. Biophys. Acta, 1992, vol. 1130, pp. 345–348. doi 10.1016/0167- 4781(92)90452-6

    Article  CAS  PubMed  Google Scholar 

  35. McKay, S.J., Devlin, R.H., and Smith, M.J., Phylogeny of Pacific salmon and trout based on growth hormone type-2 and mitochondrial NADH dehydrogenase subunit 3 DNA sequences, Can. J. Fish. Aquat. Sci., 1996, vol. 53, pp. 1165–1176. doi 10.1139/f96-042

    Article  CAS  Google Scholar 

  36. Crete-Lafrenière, A., Weir, L.K., and Bernatchez, L., Framing the Salmonidae family phylogenetic portrait: a more complete picture from increased taxon sampling, PLoS One, 2012, vol. 7, no. 10. e46662. doi 10.1371/journal.pone.0046662

    Article  PubMed  PubMed Central  Google Scholar 

  37. Oakley, T.H. and Phillips, R.B., Phylogeny of salmonine fishes based on growth hormone introns; Atlantic (Salmo) and Pacific (Oncorhynchus) salmon are not sister taxa, Mol. Phylogenet. Evol., 1999, vol. 11, no. 3, pp. 381–393. doi 10.1006/mpev.1998.0599

    Article  CAS  PubMed  Google Scholar 

  38. Pankova, M.V. and Brykov, Vl.A., Divergence of introns in the paralogous growth hormone genes of salmonid fish indicates the effect of selection, Dokl. Biol. Sci., 2013, vol. 451, nos. 1–3, pp. 231–234. doi 10.7868/S0869565213210263

    Article  CAS  PubMed  Google Scholar 

  39. Allendorf, F.W. and Thorgaard, G.H., Tetraploidy and the evolution of salmonid fishes, in Evolutionary Biology of Fishes, Turner B.J., Ed., New York: Plenum, 1984, pp. 1–53.

    Google Scholar 

  40. McKay, S.J., Trautner, J., Smith, M.J., et al., Evolution of duplicated growth hormone genes in autotetraploid salmonid fishes, Genome, 2004, vol. 47, pp. 714–723. doi 10.1139/G04-018

    Article  CAS  PubMed  Google Scholar 

  41. Christiansen, J.S., Reist, J.D., Brown, R.J., et al., Fishes, Arctic Biodiversity Assessment. Status and Trends in Arctic Biodiversity, Meltofte, H., Ed., Conservation of Arctic Flora and Fauna, Akureyri, 2013, pp. 193–245.

  42. Lioupis, A., Wallis, O.C., and Wallis, M., Cloning and characterization of the gene encoding red deer (Cervus elaphus) growth hormone: implications for the molecular evolution of growth hormone in artiodactyls, J. Mol. Endocrinol., 1997, vol. 19, no. 3, pp. 259–266. doi 10.1677/jme.0.0190259

    Article  CAS  PubMed  Google Scholar 

  43. Wallis, M., The molecular evolution of vertebrate growth hormone: a pattern of near-stasis interrupted by sustained burst of rapid change, J. Mol. Evol., 1996, vol. 43, pp. 93–100. doi 10.1007/BF02337353

    Article  CAS  PubMed  Google Scholar 

  44. Wallis, O.C. and Wallis, M., Molecular evolution of growth hormone (GH) in Cetartiodactyla: cloning and characterization of the gene encoding GH from a primitive ruminant, the chevrotain (Tragulus javanicus), Gen. Comp. Endocrinol., 2001, vol. 123, pp. 62–72. doi 10.1006/gcen.2001.7652

    Article  CAS  PubMed  Google Scholar 

  45. Wallis, O.C., Zhang, Y.P., and Wallis, M., Molecular evolution of GH in primates: characterisation of the GH genes from slow loris and marmoset defines an episode of rapid evolutionary change //J. Mol. Endocrynol., 2001, vol. 26. pp. 249–258. doi 10.1677/jme.0.0260249

    Article  CAS  Google Scholar 

  46. Maniou, Z., Wallis, O.C., and Wallis, M., Episodic molecular evolution of pituitary growth hormone in Cetartiodactilyla, J. Mol. Biol., 2004, vol. 58, pp. 743–753. doi 10.1007/s00239-004-2595-x

    CAS  Google Scholar 

  47. Ye, C., Li, Y., Shi, P., and Zhang, Y., Molecular evolution of growth hormone gene family in old world monkeys and hominoids, Gene, 2005, vol. 350, no. 2, pp. 183–192. doi 10.1016/j.gene.2005.03.003

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Brykov.

Additional information

Original Russian Text © M.V. Pankova, A.D. Kukhlevsky, V.A. Brykov, 2017, published in Genetika, 2017, Vol. 53, No. 2, pp. 201–213.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankova, M.V., Kukhlevsky, A.D. & Brykov, V.A. Fish growth hormone genes: Divergence of coding sequences in salmonid fishes. Russ J Genet 53, 221–232 (2017). https://doi.org/10.1134/S1022795416100082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416100082

Keywords

Navigation