Skip to main content

Advertisement

Log in

Smart Composite Structures with Embedded Sensors for Load and Damage Monitoring – A Review

  • Published:
Mechanics of Composite Materials Aims and scope

Fibre-reinforced polymer (FRP) composite materials are widely used in different branches of industry, especially in aerospace, owing to their low mass, high strength and stiffness, and good fatigue and corrosion resistance. However, these materials are prone to the impact damage. Especially dangerous are barely visible impact faults, since it is difficult to detect them. If left unrepaired, they can lead to collapse of the whole structure. Hence, a continuous monitoring for loads and possible impact faults in these structures is crucial. Traditionally, this is realized via surface-mounted sensor technologies. However, smart structures with internally embedded sensors offer several advantages — sensor protection from the environment, better coupling to the structure, and no disruption of surface geometry, which is essential for aerodynamic elements, also allowing monitoring in the real time without stopping their operations. The most popular existing smart structural solutions — piezoelectric sensor networks and fibre optics, are reviewed along with other, less common sensor choices. This review also covers the limitations associated with sensor embedment, whose addressing would bring the society to a more reliable, cheaper, and efficient maintenance of transportation and infrastructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

References

  1. X. P. Qing, S. J. Beard, A. Kumar, T. K. Ooi, and F.-K. Chang, “Built-in sensor network for structural health monitoring of composite structure,” J. Intel. Mat. Syst. Str., 18, 39-49 (2017).

    Article  Google Scholar 

  2. L. C. Heaton, M. Kranz, and J. Williams, “Embedded fiber optics for structural health monitoring of composite motor cases,” Proc. SPIE 5393, Nondestructive Evaluation and Health Monitoring of Aerospace Materials and Composites III, NDE for Health Monitoring and Diagnostics, San Diego, CA, USA (2004).

  3. Boeing 787 Dreamliner. URL: http://widebodyaircraft.nl/b787.html (reference date 05.02.2021).

  4. G. Marsh, “Airbus A350 XWB update,” Reinf. Plast., 54, No. 6, 20-24 (2010).

    Article  Google Scholar 

  5. H. Zhang, E. Bilotti, and T. Peijs, “The use of carbon nanotubes for damage sensing and structural health monitoring in laminated composites: a review,” J. Nanocomposites, 1, No. 4, 167-184 (2015).

    Article  CAS  Google Scholar 

  6. L. Qiu, X. Lin, Y. Wang, S. Yuan, and W. Shi, “A mechatronic smart skin of flight vehicle structures for impact monitoring of light weight and low-power consumption,” Mech. Syst. Signal Pr., 144, 106829 (2020).

    Article  Google Scholar 

  7. P. D. Foote, “Integration of structural health monitoring sensors with aerospace,” Adv. Mater. Res-Switz., 46, No. 2, 197-203 (2015).

    Google Scholar 

  8. M. Lin and F.-K. Chang, “The manufacture of composite structures with a built-in network of piezoceramics,” Compos. Sci. Technol., 62, 919-939 (2002).

    Article  CAS  Google Scholar 

  9. W. J. Staszewski, S. Mahzan, and R. Traynor, “Health monitoring of aerospace composite structures — Active and passive approach,” Compos. Sci. Technol., 69, 1678-1685 (2009).

    Article  Google Scholar 

  10. F. J. Yang and W. J. Cantwell, “Impact damage initiation in composite materials,” Compos. Sci. Technol., 70, 336-342 (2010).

    Article  CAS  Google Scholar 

  11. J. Sebastian, N. Schehl, M. Bouchard, M. Boehle, L. Li, A. Lagounov, and K. Lafdi, “Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors,” Carbon, 66, 191-200 (2014).

    Article  CAS  Google Scholar 

  12. Y. Lin, Le Tu, H. Liu, and Wei Li, “Fault analysis of wind turbines in China,” Renew. Sust. Energ. Rev., 55, 482-490 (2016).

  13. H. F. Zhou, H. Y. Dou, L. Z. Qin, Y. Chen, Y. Q. Ni, and J. M. Ko, “A review of full-scale structural testing of wind turbine blades,” Renew. Sust. Energ. Rev., 33, 177-187 (2014).

    Article  Google Scholar 

  14. B. Chen, S. You, Y. Yu, and Y. Zhou, “Acoustical damage detection of wind turbine blade using the improved incremental support vector data description,” Renew. Energ., 156, 548-557 (2020).

    Article  Google Scholar 

  15. R. Yang, Y. He, and H. Zhang, “Progress and trends in nondestructive testing and evaluation for wind turbine composite blade,” Renew. Sust. Energ. Rev., 60, 1225-1250 (2016).

    Article  CAS  Google Scholar 

  16. A. Ghoshal, M. J. Sundaresan, M. J. Schulz, and P. F. Pai, “Structural health monitoring techniques for wind turbine blades,” J. Wind Eng. Ind. Aerod., 85, 309-324 (2000).

    Article  Google Scholar 

  17. Z. Su, X. Wang, Z. Chen, L. Ye, and D. Wang, “A built-in active sensor network for health monitoring of composite structures,” Smart Mater. Struct., 15, 1939-1949 (2006).

    Article  Google Scholar 

  18. V. K. Varadan and V. V. Varadan, “Conformal and embedded IDT microsensors for health monitoring of structures,” Proc. SPIE 3990, Smart Structures and Materials 2000: Smart Electronics and MEMS, SPIE’s 7th Annual International Symposium on Smart Structures and Materials, Newport Beach, CA, USA (2000).

  19. A. Tayebi and M. M. Ul Hoque, “Design of experiments optimization of embedded MEMS sensors in composites for structural health monitoring,” Proc. SPIE 5057, Smart Structures and Materials 2003: Smart Systems and Nondestructive Evaluation for Civil Infrastructures, Smart Structures and Materials, San Diego, California, USA (2003).

  20. L. Lampani, F. Sarasini, J. Tirillò, and P. Gaudenzi, “Analysis of damage in composite laminates with embedded piezoelectric patches subjected to bending action,” Compos. Struct., 202, 935-942 (2018).

    Article  Google Scholar 

  21. P. Wierach, Nano-Micro-Macro. In: M. Wiedemann, M. Sinapius (eds). Adaptive, tolerant and efficient composite structures, research topics in aerospace. Berlin Heidelberg: Springer-Verlag; (2013).

    Google Scholar 

  22. C. A. Paget, K. Levin, and C. Delebarre, “Actuation performance of embedded piezoceramic transducer in mechanically loaded composites,” Smart Mater. Struct., 11, No. 6, 2002.

  23. N. D. Alexopoulos, C. Bartholome, P. Poulin, and Z. Marioli-Riga, “Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers,” Compos. Sci. Technol., 70, 260-271 (2010).

    Article  CAS  Google Scholar 

  24. Y. J. Yan and L. H. Yam, “Online detection of crack damage in composite plates using embedded piezoelectric actuators/ sensors and wavelet analysis,” Compos. Struct., 58, 29-38 (2002).

    Article  Google Scholar 

  25. C. C. Bowland, Y. Wang, and A. K. Naskar, “Development of nanoparticle embedded sizing for enhanced structural health monitoring of carbon fiber composites,” Proc. SPIE 10169, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, and Civil Infrastructure, Portland, Oregon, USA (2017).

  26. S. Bhalla and C. K. Soh, “Structural health monitoring by piezo-impedance transducers. I: Modeling,” J. Aerospace Eng., 17, No. 4, 154-165 (2004).

    Article  Google Scholar 

  27. J. H. Nienwenhui, J. J. Neumann, D. W. Greve, and I. J. Oppenheim, “Generation and detection of guided waves using PZT wafer transducers,” IEEE T Ultrason. Ferr., 52, No. 11, 2103-2111 (2005).

    Article  Google Scholar 

  28. L. Qiu, X. Deng, S. Yuan, Y. Huang, and Y. Ren, “Impact monitoring for aircraft smart composite skins based on a lightweight sensor network and characteristic digital sequences,” Sensors, 18, 2218 (2018).

    Article  Google Scholar 

  29. B. Lin and V. Giurgiutiu, “Modeling and testing of PZT and PVDF piezoelectric wafer active sensors,” Smart Mater Struct., 15, 1085-109 (2006).

    Article  CAS  Google Scholar 

  30. M. Lin, A. Kumar, S. Beard, and X. Qing, “Built-in structural diagnostic with the SMART layer and SMART suitcase,” Smart Materials Bulletin, 2001, No. 4, 7-11 (2001).

  31. A. Ghoshal, J. Ayers, M. Gurvich, M. Urban, and N. Bordick, “Experimental investigations in embedded sensing of composite components in aerospace vehicles,” Compos Part B-Eng., 71, 52-62 (2015).

    Article  CAS  Google Scholar 

  32. M. B. Lemistre, Electric and Electromagnetic Properties Sensing, in: C. Boller, F.-K. Chang and Y. Fujino (eds.), Encyclopedia of Structural Health Monitoring, Wiley (2009).

  33. M. Melnykowycz and A. J. Brunner, “The performance of integrated active fiber composites in carbon fiber laminates,” Smart Mater. Struct., 20, No. 7, 075007 (2011).

  34. R. Paradies and B. Schlapfer, “Finite element modeling of piezoelectric elements with complex electrode configuration,” Smart Mater. Struct., 18, 025015 (2009).

    Article  Google Scholar 

  35. D. N. Solovyev, S. S. Dadunashvili, A. Mironov, P. Doronkin, and D. Mironovs, “Mathematical modeling and experimental investigations of a main rotor made from layered composite materials,” Mech. Compos. Mater., 56, 103-110 (2020).

    Article  Google Scholar 

  36. A. Mironov, A. Priklonskiy, D. Mironovs, and P. Doronkin, “Application of deformation sensors for structural health monitoring of transport vehicles,” Lecture Notes in Networks and Systems, 117 (2020).

  37. J. R. Zayas, D. P. Roach, M. A. Rumsey, W. R. Allan, and D. A. Horsley, “Low-cost fiber Bragg grating interrogation system for in situ assessment of structures,” SPIE, Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, San Diego, CA, USA (2007).

  38. R. De Oliveira, C. A. Ramos, and A. T. Marques, “Health monitoring of composite structures by embedded FBG and interferometric Fabry–Perot sensors,” Comput Struct., 86, No. 3, 340–346 (2008).

    Article  Google Scholar 

  39. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring — present status and applications,” Sensor Actuat. A-Phys, 147, No. 1, 150–164 (2008).

    Article  CAS  Google Scholar 

  40. M. Frövel, G. Carrión, J. M. Pintado, J. Cabezas, and F. Cabrerizo, “Health and usage monitoring of Spanish National Institute for Aerospace Technology unmanned air vehicles,” Struct. Health Monit., 16, No. 4, 486-493 (2016).

    Article  Google Scholar 

  41. J. Alvarez-Montoya, A. Carvajal-Castrillón, and J. Sierra-Pérez, “In-flight and wireless damage detection in a UAV composite wing using fiber optic sensors and strain field pattern recognition,” Mech. Syst. Signal Pr., 136, 106526 (2020).

    Article  Google Scholar 

  42. T. J. Arsenault, A. Achuthan, P. Marzocca, C. Grappasonni, and G. Coppotelli, “Development of a FBG based distributed strain sensor system for wind turbine structural health monitoring,” Smart Mater. Struct., 22 075027 (2013).

    Article  Google Scholar 

  43. H. Cheng-Yu, Z. Yi-Fan, Z. Meng-Xi, Leung Lai Ming Gordon, and L. Li-Qiang, “Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques,” Sensor Actuat A-Phus., 244, 184-197 (2016).

  44. M. Yeager, M. Todd, W. Gregory, and C. Key, “Assessment of embedded fiber Bragg gratings for structural health monitoring of composites,” Struct. Health Monit., 16, No. 3, 262-275 (2017).

    Article  Google Scholar 

  45. H. V. Thakur, S. M. Nalawade, Y. Saxena, and K. T. V. Grattan, “All-fiber embedded PM-PCF vibration sensor for structural health monitoring of composite,” Sensor Actuat. A-Phys., 167, 204–212 (2011).

    Article  CAS  Google Scholar 

  46. P. Antunes, H. Lima, N. Alberto et al., “Optical fiber accelerometer system for structural dynamic monitoring,” IEEE Sens. J., 9, No. 11, 1347-1354 (2009).

    Article  Google Scholar 

  47. X. W. Ye, Y. H. Su, and J. P. Han, “Structural health monitoring of civil infrastructure using optical fiber sensing technology: A comprehensive review,” The Scientific World Journal, 2014, Article ID 652329 (2014).

    Article  CAS  Google Scholar 

  48. I. Kressel, B. Dorfman, Y. Botsev, A. Handelman, J. Balter, A. C. R. Pillai, M. H. Prasad, N. Gupta, A. M. Joseph, R. Sundaram, and M. Tur, “Flight validation of an embedded structural health monitoring system for an unmanned aerial vehicle,” Smart Mater. Struct., 24, No. 7, 075022 (2015).

  49. N. Gutiérrez, R. Fernández, P. Galvín, and F. Lasagni, “Fiber Bragg grating application to study an unmanned aerial system composite wing,” J. Intel. Mater. Syst. Str., 30, No. 8, 1252–1262 (2019).

    Article  Google Scholar 

  50. A. J. van Wyk and C. V. Robertson, “A systems engineering approach to structural health monitoring of composites using embedded optical fibre Bragg sensors for aeronautical applications,” Proc. SPIE 8066, Smart Sensors, Actuators, and MEMS V, 80660S (2011).

  51. D. A. Krohn, T. W. MacDougall, and A. Mendez, Fiber Optic Sensors: Fundamentals and Applications, SPIE Press monograph PM247, fourth ed., SPIE Press (2014).

  52. N. Gutiérrez, “Monitorización Estructural SHM Mediante Redes De Bragg,” Phd Thesis, University of Seville, Spain (2018).

  53. A. Carvajal-Castrillón, J. Alvarez-Montoya, J. Niño-Navia, L. Betancur-Agudelo, F. Amaya-Fernandez, and J. Sierra-Pérez, “Structural health monitoring on an unmanned aerial vehicle wing’s beam based on fiber Bragg gratings and pattern recognition techniques,” Procedia Structural Integrity, 5, 729-736 (2017).

    Article  Google Scholar 

  54. Smart fibers product information, http://www.smartfibres.com/Attachments/SFref298.pdf, http://www.smartfibres.com/docs/SFRef269.pdf, http://www.smartfibres.com/Attachments/SFref298.pdf (reference date 05.02.2021).

  55. Insensys. Epsilon Optics product information, http://www.epsilonoptics.com/interrogators.html (reference date 05.02.2021).

  56. 4DSP product information, http://www.4fos.com/RTS150.php (reference date 05.02.2021).

  57. Technobis product information, http://www.technobis.com/index.php/products/extreme-fiber-sensing/ladybughighresolution-strain-sensing/ (reference date 05.02.2021).

  58. W. Baker, I. McKenzie, and R. Jones, “Development of life extension strategies for Australian military aircraft, using structural health monitoring of composite repairs and joints,” Compos. Struct., 66, 133–143 (2004).

    Article  Google Scholar 

  59. S.-W. Kim, W.-R. Kang, M.-S. Jeong, I. Lee, and I.-B. Kwon, “Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line,” Smart Mater. Struct., 22, 125004 (2013).

    Article  Google Scholar 

  60. H.-I. Kim, J.-H. Han, and H.-J. Bang, “Real-time deformed shape estimation of a wind turbine blade using distributed fiber Bragg grating sensors,” Wind Energ., 17, 1455-1467 (2014).

    Google Scholar 

  61. S. Park, T. Park and K. Han, “Real-time monitoring of composite wind turbine blades using fiber Bragg grating sensors,” Adv. Compos. Mater., 20, No. 1, 39-51 (2011).

    Article  Google Scholar 

  62. A. Downey, F. Ubertini, and S. Laflamme, “Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion,” J. Wind Eng. Ind. Aerod., 168, 288–296 (2017).

    Article  Google Scholar 

  63. Z. Racz, E. M. Hackney, and D. Wood, “Soft elastomeric capacitive sensor for structural health monitoring,” Procedia Eng., 168, 721-724 (2016).

    Article  Google Scholar 

  64. Y. Suzuki, T. Suzuki, A. Todoroki, and Y. Mizutani, “Smart lightning protection skin for real-time load monitoring of composite aircraft structures under multiple impacts,” Compos. Part A-Appl. S., 67, 44–54 (2014).

    Article  Google Scholar 

  65. Dexmet Corporation. Lightning Strike Protection for Carbon Fiber Airplane. In: Advancement of Materials Process Engineering (SAMPE) Conference (2007).

  66. C. Cherif, E. Haentzsche, R. Mueller, A. Nocke, M. Huebner, and M. M. B. Hasan, in: V. Koncar (eds.), Carbon fibre sensors embedded in glass fibre-based composites for windmill blades, Ch. 15, Woodhead Publishing, pp. 329-352 (2016).

  67. S. Butler, M. Gurvich, A. Ghoshal, G. Welsh, P. Attridge, H. Winston, M. Urban, and N. Bordick, “Effect of embedded sensors on interlaminar damage in composite structures,” J. Intel. Mat. Syst. Str., 22, No. 16, 1857-1868 (2011).

    Article  CAS  Google Scholar 

  68. K. Saton, K. Fukuchi, Y. Kurosawa, A. Hongo, and N. Takeda, “Polyimide-Coate Small-Diameter Optical Fiber Sensors for Embedding in Composite Laminate Structures,” SPIE: Newport Beach, CA, USA, 285-294 (2001).

  69. N. Takeda, Y. Okabe, J. Kuwahara, S. Kojima, and T. Ogisu, “Development of smart composite structures with smalldiameter fiber Bragg grating sensors for damage detection: Quantitative evaluation of delamination length in CFRP laminates using Lamb wave sensing,” Compos. Sci. Tech., 65, 2575-2587 (2005).

    Article  CAS  Google Scholar 

  70. G. Luyckx, E. Voet, N. Lammens, and J. Degrieck, “strain measurements of composite laminates with embedded fiber Bragg gratings: Criticism and opportunities for research,” Sensors, 11, No. 1, 384-408 (2011).

    Article  Google Scholar 

  71. G. Pereira, C. Frias, H. Faria, O. Frazão, and A. Marques, “Study of strain-transfer of FBG sensors embedded in unidirectional composites,” Polym Test., 32, No. 6, 1006–1010 (2013).

    Article  CAS  Google Scholar 

  72. B. Torres, I. Paya-Zaforteza, P. A. Calderon, and J. M. Adam, “Analysis of the strain transfer in a new FBG sensor for structural health monitoring,” Eng. Struct., 33, No. 2, 539-548 (2011).

    Article  Google Scholar 

  73. G. Pereira, C. Frias, H. Faria, O. Frazão, and A. T. Marques, “On the improvement of strain measurements with FBG sensors embedded in unidirectional composites,” Polym Test., 32, 99–105 (2013).

    Article  CAS  Google Scholar 

  74. G. Luyckx, E. Voet, W. Waele, and J. Degrieck, “Multi-axial strain transfer from laminated CFRP composites to embedded Bragg sensor: I. Parametric study,” Smart Mater. Struct., 19, No. 10, 105017 (2010).

  75. A. Hehr, Y. Song, B. Suberu, J. Sullivan, V. Shanov and M. Schulz, in: M. J. Schulz, V. N. Shanov and Z. Yin (eds), Embedded Carbon Nanotube Sensor Thread for Structural Health Monitoring and Strain Sensing of Composite Materials, Ch. 24, Nanotube Superfiber Materials, Changing Engineering Design, Elsevier, pp. 671-712 (2014).

  76. H. Herranen, J. Majak, P. Tsukrejev, K. Karjust, and O. Märtens, “Design and manufacturing of composite laminates with structural health monitoring capabilities,” Procedia CIRP, 72, 647-652 (2018).

    Article  Google Scholar 

  77. L. Qiu and S. Yuan, “On development of a multi-channel PZT array scanning system and it’s evaluating application on UAV wing box,” Sensor Actuat. A-Phys., 151, 220-230 (2009).

    Article  CAS  Google Scholar 

  78. Q. Wang, M. Hong, and Z. Su, “An in situ structural health diagnosis technique and its realization via a modularized system,” IEEE Trans. Instrum. Meas., 64, 873-887 (2015).

    Article  Google Scholar 

  79. Hardware-Acellent Technologies, Inc. Available online: http://www.acellent.com/en/hardware/ (reference date 05.02.2021).

  80. B. A. Sjogren, “Static strength of CFRP laminates with embedded fiber-optic edge connectors,” Compos. Part A-Appl. S., 32, 189-196 (2001).

    Article  CAS  Google Scholar 

  81. A. K. Green, M. Zaidman, E. Shafir, M. Tur, and S. Gali, “Infrastructure development for incorporating fiber-optic sensors in composite materials,” Smart Mater. Struct., 9, 316-321 (2000).

    Article  CAS  Google Scholar 

  82. M. Ciccotti, M. George, V. Ranieri, L. Wondraczek, and C. Marlière, “Dynamic condensation of water at crack tips in fused silica glass,” J. Non-Cryst. Solids, 354, 564-568 (2008).

    Article  CAS  Google Scholar 

  83. A. Saghafi A. R. Mirhabibi, and G. H. Yari, “Improved linear regression method for estimating Weibull parameters,” Theor. Appl. Fract. Mec., 52, 180-182 (2009).

    Article  Google Scholar 

  84. M. Wang, N. Li, G. D. Wang, S. W. Lu, Q. D. Zhao, and X. L. Liu, “High-sensitive flexural sensors for health monitoring of composite materials using embedded carbon nanotube (CNT) buckypaper,” Compos. Struct., 113280 (2020).

  85. K. S. C. Kuang, R. Kenny, M. P. Whelan, W. J. Cantwell, and P. R. Chalker, “Embedded fiber Bragg grating sensors in advanced composite materials,” Compos. Sci. Technol., 61, 1379–1387 (2001).

    Article  Google Scholar 

  86. G. C. Kahandawa, J. Epaarachchi, H. Wang, J. Canning, and K. T. Lau, “Extraction and processing of real time strain of embedded FBG sensors using a fixed filter FBG circuit and an artificial neural network,” Measurement, 46, 4045- 4051 (2013).

    Article  Google Scholar 

  87. A. Vieira, R. de Oliveira, O. Frazão, J. M. Baptista, and A. T. Marques, “Effect of the recoating and the length on fiber Bragg grating sensors embedded in polymer composites,” Materials & Design, 30, 1818–1821 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Janeliukstis.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 57, No. 2, pp. 189-222, March-April, 2021.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janeliukstis, R., Mironovs, D. Smart Composite Structures with Embedded Sensors for Load and Damage Monitoring – A Review. Mech Compos Mater 57, 131–152 (2021). https://doi.org/10.1007/s11029-021-09941-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-021-09941-6

Keywords

Navigation