Skip to main content

Advertisement

Log in

Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators

  • Published:
Mechanics of Composite Materials Aims and scope

An optimization methodology for the design of a full-scale rotor blade with an active twist in order to enhance its ability to reduce vibrations and noise is presented. It is based on a 3D finite-element model, the planning of experiments, and the response surface technique to obtain high piezoelectric actuation forces and displacements with a minimum actuator weight and energy applied. To investigate an active twist of the helicopter rotor blade, a structural static analysis using a 3D finite-element model was carried out. Optimum results were obtained at two possible applications of macrofiber composite actuators. The torsion angle found from the finite-element simulation of helicopter rotor blades was successfully validated by its experimental values, which confirmed the modeling accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. S. J. Shin, C. E. S. Cesnik, and S. R. Hall, “Design and simulation of integral twist control for helicopter vibration reduction,” Int. J. Control Autom. Syst.,5, No. 1,24-34 (2007).

  2. P. Chen and I. Chopra, “Induced strain actuation of composite beams and rotor blades with embedded piezoceramic elements,” Smart Mate. Struct., 5, No. 1, P. 35-48 (1996).

    Article  Google Scholar 

  3. J. P. Rodgers and N. W. Hagood, “Design, manufacture, and testing of an integral twist–actuated rotor blade,” Proc. 8th Int. Conf. Adaptive Structures and Technology, 23-26 October 1997, Nagoja, Japan, 13 p (1997).

  4. J. P. Rodgers and N. W. Hagood, “Hover testing of a 1/6th mach-scaled CH–47D blade with integrated twist actuation,” Proc. 9th Int. Conf. Adaptive Structures and Technology, 14-16 October 1998, Boston, USA,. 13 p (1998).

  5. M. L. Wilbur, W. T. Yeager, W. K. Wilkie, C. E. S. Cesnik, and S. J. Shin, “Hover testing of the NASA/ARMY/MIT active twist rotor prototype blade,” Proc. 56th Annual Forum Amer. Helicopter Soc., 2-4 May 2000, Virginia Beach, USA, 14 p (2000).

  6. M. L. Wilbur, P. Mirick, W. E. A. Yeager, C. W. Langston, C. E. S. Cesnik, and S. J. Shin, “Vibratory loads reduction testing of the Nasa/Army/MIT active twist rotor,” J. Amer. Helicopter Soc., 47, No. 2, 123-133 (2002).

    Article  Google Scholar 

  7. J. Riemenschneider, P. Wierach, and S. Keye, “Preliminary study on structural properties of active twist blades,” Proc. 29th Europ. Rotocraft Forum, 16-18 September 2003, Friedrichshafen, German, 12 p (2003).

  8. J. Riemenschneider, S. Keye, P. Wierach, and H. Mercier des Rochettes, “Overview of the common DLR/ONERA project’ active twist blade’,” Proc. 30th Europ. Rotorcraft Forum, 14-16 September 2004, Marseille, France, 9 p (2004).

  9. H. P. Monner, S. Opitz., J. Riemenschneider, and P. Wierach, “Evolution of active twist rotor designs at DLR,” Proc. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conf., 7-10 April 2008, Schaumburg, USA, 19 p (2008).

  10. J. Riemenschneider, S. Opitz, M. Schulz, and V. Plaßmeier, “Active twist rotor for wind tunnel investigations,” Proc. Conf. Smart Materials, Adaptive Structures and Intelligent Systems, September 28- October 1, 2010, Philadelphia, USA, 7 p (2010).

  11. A. Chattopadhyay, Q. Lin, and H. Gu, “Vibration reduction in rotor blades using active composite box beam,” AIAA J., 38, No. 7, 1125-1131 (2000).

    Article  Google Scholar 

  12. A. Chattopadhyay, Q. Lin, and H. Gu, “Modelling of smart composite box beams with nonlinear induced strain,” Composites: Pt B, Engineering, 30, No. 6, 603-612 (1999).

    Article  Google Scholar 

  13. C. E. S. Cesnik and S. J. Shin, “On the twist performnce of a multiple-cell active helicopter blade,” Smart Mater. Struct., 10, No. 1, 53-61 (2001).

    Article  Google Scholar 

  14. C. E. S. Cesnik and S. J. Shin, “On the modelling of integrally actuated helicopter blades,” Int. J. Solids Struct., 38, No. 10-13, 1765-1789 (2001).

    Article  Google Scholar 

  15. M. K. Sekula, M. L. Wilbur, and W. T. Yeager, “Aerodynamic design study of an advanced active twist rotor,” Proc. Amer. Helicopter Soc. 4th Decennial Specialist Conf. Aeromech., 1- 3 June 1998, San Francisco, USA, 12 p (1998)

  16. M. K. Sekula, M.,L. Wilbur, W. T. Yeager, “A parametric study of the structural design of an advanced active twist rotor,” Proc. 61st Annual Forum Amer. Helicopter Soc., 21-23 January 2005, Grapevine, USA, 14 p (2005).

  17. M. L. Wilbur and M. K. Sekula, “The effect of tip geometry on active-twist rotor response,” Proc. 61st Annual Forum Amer. Helicopter Soc., 21-23 January 2005, Grapevine, USA, 14 p (2005).

  18. C. E. S. Cesnik, J. Mok, A. S. Parikh, and S. Shin, “Optimisation design framework for integrally twisted helicopter blades,” Proc. 45th AIAA/ASME/ASCE/ASC Structures, Structural Dynamics and Materials Conf., 19-22 April 2004, Palm Springs, USA, 10 p (2004).

  19. C. E. S. Cesnik, J. Mok, J. A. Morillo, and A. S. Parikh, “Design optimisation of active twist rotor blades,” Proc. 30th Europ. Rotorcraft Forum, 14-16 September 2004, Marseille, France, 14 p (2004).

  20. S. J. Shin, C. E. S. Cesnik, W. K. Wilkie, M. L. Wilbur, “Design and manufacturing of a model-scale active twist rotor prototype blade,” J. Intell. Mater. Syst. Struct., 19, No. 12, 1443-1456 (2008).

    Article  Google Scholar 

  21. P. Wierach, J. Riemenschneider, S. Opitz, and F. Hoffmann, “Experimental investigation of an active twist rotor under centrifugal loads,” Adaptive, Tolerant and Efficient Composite Structures, Springer–Verlag Berlin Heidelberg, 391-407 p. (2013).

  22. J. Riemenschneider and S. Opitz, “Measurement of twist deflection in active twist rotor,” Aerospace Sci. and Technol., 15, No. 3, 216-223 (2011).

    Article  Google Scholar 

  23. P. Audze and V. Eglais, “New approach to planning out of experiments,” Problems of Dynamics and Strength, 35, 104-107 (1977).

    Google Scholar 

  24. J. Auzins, A. Janushevskis, J. Janushevskis, and E. Skukis, “Software EdaOpt for experimental design, analysis and multiobjective robust optimization,” Proc. Int. Conf. Engineering and Applied Science Optimization, 4-6 June 2014, Kos Island, Greece, 14 p (2014).

  25. V. Eglais, “Approximation of data by multi–dimensional equation of regression,” Problems of Dynamics and Strength, 39, 120-125 (1981).

    Google Scholar 

  26. S. Glukhikh, E. Barkanov, A. Kovalovs, P. Masarati, M. Morandini, J. Riemenschneider, and P. Wierach, “Design of helicopter rotor blades with actuators made of a piezomacrofiber composite,” Mech. Compos. Mater., 44, No. 1, 77-86 (2008).

    Article  Google Scholar 

  27. W. K. Wilkie, M. L. Wilbur, P. H. Mirick, C. E. S. Cesnik, and S. J. Shin, “Aeroelastic analysis of the NASA/ARMY/MIT active twist rotor,” Proc. 55th Annual Forum Amer. Helicopter Soc., 25-27 May 1999. Montreal, Canada, 13 p (1999).

Download references

Acknowledgement

This work was supported by the Riga Technical University through the Scientific Research Project Competition for Young Researchers No. ZP-2016/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kovalovs.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 53, No. 2, pp. 259-278 , March-April, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalovs, A., Barkanov, E., Ruchevskis, S. et al. Modeling and Design of a Full-Scale Rotor Blade with Embedded Piezocomposite Actuators. Mech Compos Mater 53, 179–192 (2017). https://doi.org/10.1007/s11029-017-9652-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-017-9652-1

Keywords

Navigation