Skip to main content

Advertisement

Log in

Investigation into the Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy-Based ZrO2-Particle-Reinforced Metal-Matrix Composites

  • Published:
Mechanics of Composite Materials Aims and scope

In the present study, an investigation has been carried out into the influence of ZrO2 content and casting temperature on the mechanical properties and fracture behavior of A356 Al/ZrO2 composites. A356 aluminum alloy matrix composites reinforced with 5, 10 and 15 vol.% ZrO2 were fabricated at 750, 850, and 95 0°C via the stir-casting method. Based on the results obtained, the optimum amount of reinforcement and casting temperature were determined by evaluating the density and mechanical properties of the composites through the use of hardness and tensile tests. The fracture surfaces of composite specimens were also studied to identify the main fracture mechanisms of the composites. The results obtained indicated that all samples fractured due to the interdendritic cracking of the matrix alloy. Reinforcing the Al matrix alloy with ZrO2 particles increased the hardness and ultimate tensile strength of the alloy to the maximum values of 70 BHN and 232 MPa, respectively. The best mechanical properties were obtained for the specimens with 15 vol.% of ZrO2 produced at 75 0°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. P. Davima, J. Silva, and A. M. Baptista, “Experimental cutting model of metal matrix composites (MMCs),” J. Mater. Process. Technol., 183, 358-362 (2007).

    Article  Google Scholar 

  2. M. Kok, “Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites,” J. Mater. Process. Technol., 161, 381–387 (2005).

    Article  CAS  Google Scholar 

  3. W. Shyan Lee, W. Chung Sue, and C. Feng Lin, “The effects of temperature and strain rate on the properties of carbon-fiber-reinforced 7075 aluminum alloy metal-matrix composite,” J. Compos. Sci. Technol., 60, 1975-83 (2000).

    Article  Google Scholar 

  4. S. Amirkhanlou, M. R. Rezaei, B. Niroumand, and M. R. Toroghinejad, “Refinement of microstructure and improvement of mechanical properties of Al/Al2O3 cast composite by accumulative roll bonding process,” Mater. Sci. Eng. A, 528, 2548-2553 (2011).

    Article  Google Scholar 

  5. R. Rahmani Fard and F. Akhlaghi, “Effect of extrusion temperature on the microstructure and porosity of A356-SiCp composites,” J. Mater. Process. Technol., 187-188, 433–436 (2007).

    Article  Google Scholar 

  6. J. Hashim, L. Looney, and M. S. J. Hashmi, “Particle distribution in cast metal matrix composites-Part I,” J. Mater. Process. Technol., 123, 251-257 (2002).

    Article  CAS  Google Scholar 

  7. R. Jamaati, and M. R. Toroghinejad, “Manufacturing of high-strength aluminum/alumina composite by accumulative roll bonding,” J. Mater. Sci. Eng. A, 527, 4146-4151 (2010).

    Article  Google Scholar 

  8. The American Society for Testing Materials. Standard test method of tension testing wrought and cast aluminum and magnesium alloy products – B557. Handbook of ASTM Standards, Philadelphia—New York (1994).

  9. J. E. Spowart, B. Maruyama, and D. B. Miracle, “Multi-scale characterization of spatially heterogeneous systems: implications for discontinuously reinforced metal–matrix composite microstructures,” J. Mater. Sci. Eng. A, 307, 51-66 (2001).

    Article  Google Scholar 

  10. M. A.Baghchesara, H. Abdizadeh, and H. R. Baharvandi, “Fractography of stir casted Al-ZrO2 composites,” Iran. J. Sci. Technol. Trans. B Eng., 33, 453-462 (2010).

    Google Scholar 

  11. S. Das, S. Das, and K. Das, “Abrasive wear of zircon sand and alumina reinforced Al–4.5 wt.% Cu alloy matrix composites – A comparative study,” J. Comp. Sci. Technol., 67, 746-751 (2007).

    Article  CAS  Google Scholar 

  12. W. S. Miller and F. J. Humpherys, “Strengthening mechanisms in particulate metal matrix composites,” J. Scripta Metall. Mater., 25, 33-38 (1991).

    Article  CAS  Google Scholar 

  13. V. V. Ganesh and N. Chawla, “Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites:experiments and microstructure-based simulation,” J. Mater. Sci. Eng. A, 391, 342-353 (2005).

    Article  Google Scholar 

  14. Q. Zhang, H. Zhang, M. Gu, and Y. Jin, “Studies on the fracture and flexural strength of Al/Sip composite,” J. Mater. Letters, 58, 3545-3550 (2004).

    Article  CAS  Google Scholar 

  15. Y. Li, K. T. Ramesha, and E. S. C. Chin, “Comparison of the plastic deformation and failure of A359/SiC and 6061-T6/Al2O3 metal matrix composites under dynamic tension,” J. Mater. Sci. Eng. A, 371, 359-370 (2004).

    Article  Google Scholar 

  16. B. Y. Lou and J. C. Huang, “Failure characteristics of 6061/ Al2O3/15p and 2014/Al2O3/15p composites as a function of loading rate,” J. Metall. Mater. Trans. A, 27A, 3095-3107 (1996).

    Article  CAS  Google Scholar 

  17. J. J. Lewandiwski, C. Liu, and W. H. Hunt, “Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix momposite,” J. Mater. Sci. Eng. A, 107, 241-255 (1989).

    Article  Google Scholar 

  18. P. M. Mummery, B. Derby, and C. B. Scruby, “Acoustic emission from particulate-reinforced metal matrix composites,” J. Acta Metall. Mater., 41, 1431-1445 (1993).

    Article  CAS  Google Scholar 

  19. Y. Brechet, J. D. Embumy, and L. Luo, “Damage initiation in metal matrix composites,” J. Acta Metall. Mater., 39, 1781-1786 (1991).

    Article  CAS  Google Scholar 

  20. R. J. Arsenault, N. Shi, C. R. Feng, and L. Wang, “Localized deformation of SiC-Al composites,” J. Mater. Sci. Eng. A, 131, 55-68 (1991).

    Article  Google Scholar 

  21. J. Llorca, A. Needleman, and S. Suresh, “ An analysis of the effects of matrix void growth on deformation and ductility in metal-ceramic composites,” J. Acta Metall, Mater., 39, 2317-2335 (1991).

    Article  CAS  Google Scholar 

  22. S. Tahamtan, A. Fadavi Boostani, “Microstructural characteristics of thixoforged A356 alloy in mushy state,” J. Trans. Nonferrous Met. Soc. China, 20,781–787 (2010).

    Article  Google Scholar 

  23. S. Min, “Effects of volume fraction of SiC particles on mechanical properties of SiC/Al composites,” Trans. Nonferrous met. Soc. China, 19, 1400-1404 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Baghchesara.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 49, No. 5, pp. 849-858, September-October, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdizadeh, H., Baghchesara, M.A. Investigation into the Mechanical Properties and Fracture Behavior of A356 Aluminum Alloy-Based ZrO2-Particle-Reinforced Metal-Matrix Composites. Mech Compos Mater 49, 571–576 (2013). https://doi.org/10.1007/s11029-013-9373-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9373-z

Keywords

Navigation