Skip to main content
Log in

Mechanical properties of a rigid polyurethane/montmorillonite composite prepared by using a biopolyol

  • Published:
Mechanics of Composite Materials Aims and scope

The preparation of specimens from a rigid polyurethane containing montmorillonite (MMT) particles as a filler is described. The specimens were fabricated employing a biopolyol synthesized from rapeseed oil. The investigation of their structure was performed by using the X-ray diffraction analysis. The thermomechanical properties of the specimens were determined by means of a dynamic mechanical analysis at temperatures varying from 20 to 160°C. Experimental data on the influence of MMT additions on the mechanical properties (hardness, strength, elastic modulus, ultimate elongation, and creep) of the composite are obtained. A theoretical analysis of elastic properties of the composite is carried out by using the Mori–Tanaka theory of an equivalent medium. The calculation results are compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Z. S. Petrovic, “Polyurethanes from vegetable oils,” Polym. Rev., 48, Iss. 1, 109–155 (2008).

    Article  CAS  Google Scholar 

  2. M. Desrochesa, M. Escouvoisa, R. Auvergnea, S. Caillola, and B. Boutevina, “From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products,” Polym. Rev., 52, Iss. 1, 38–79 (2012).

    Article  Google Scholar 

  3. B. Ericson, J. E. Nelson, and P. Winter, “Perspective and opportunities in industrial biotechnology in renewable chemicals,” Biotechnology J., 7, 176–185 (2012).

    Article  Google Scholar 

  4. E. Zini and M. Scandola, “Green composites: An overview,” Polym. Compos., 32, Iss. 12, 1905–1915 (2011).

    Article  CAS  Google Scholar 

  5. M. A. R. Meier, J. O. Metzgerb, and U. S. Schubert, “Plant oil renewable resources as green alternatives in polymer science,” Chem. Soc. Rev., 36, 1788–1802 (2007).

    Article  CAS  Google Scholar 

  6. L. Montero de Espinosa and M. A. R. Meier, “Plant oils: The perfect renewable resource for polymer science?!” Europ. Polym. J., 47, 837–852 (2011).

    Article  CAS  Google Scholar 

  7. D. K. Chattopadhyay and K. V. S. N. Raju, “Structural engineering of polyurethane coatings for high-performance applications,” Progr. Polym. Sci., 32, Iss. 3, 352–418 (2007).

    Article  CAS  Google Scholar 

  8. P. Rojek and A. Prociak, “Effect of different rapeseed-oil-based polyols on the mechanical properties of flexible polyurethane foams,” J. Appl. Polym. Sci., 125, No. 4, 2936–2945 (2012).

    Article  CAS  Google Scholar 

  9. H. Beneš, T. Vlček, R. Černá, J. Hromádková, Z. Walterová, and R. Svitáková, “Polyurethanes with bio-based and recycled components,” Europ. J. Lipid Sci. Technol., 114, 71–83 (2012).

    Article  Google Scholar 

  10. R. Tanaka, Sh. Hirose, and H. Hatakeyama, “Preparation and characterization of polyurethane foams using a palm oil-based polyol,” Origin. Bioresource Technol., 99, Iss. 9, 3810–3816 (2008).

    Article  CAS  Google Scholar 

  11. S. Tan, T. Abraham, D. Ference, and C. W. Macosko, “Rigid polyurethane foams from a soybean oil-based polyol,” Polymer, 52, 2840–2846 (2011).

    Article  CAS  Google Scholar 

  12. Z. Wang and T. J. Pinnavaia, “Nanolayer reinforcement of elastomeric polyurethane,” Chem. Mater., 10, No. 12, 3769–3771 (1998).

    Article  CAS  Google Scholar 

  13. T. K. Chen, Y. I. Tien, and K. H. Wei, “Synthesis and characterization of a novel segmented polyurethane/clay nanocomposite via poly(ε-caprolactone)/clay,” J. Polym. Sci. Pt. A, Polym. Chem., 37, No. 13, 2225–2233 (1999).

    Article  CAS  Google Scholar 

  14. K. J. Yao, M. Song, D. J. Hourston, and D. Z. Luo, “Polymer/layered clay nanocomposites: 2 polyurethane nanocomposites,” Polymer, 43, 1017–1020 (2002).

    Article  CAS  Google Scholar 

  15. W. J. Choia, S. H. Kimb, Y. J. Kimc, and S. Ch. Kima, “Synthesis of chain-extended organifier and properties of polyurethane/clay nanocomposites,” Polymer, 45, 6045–6057 (2004).

    Article  Google Scholar 

  16. U. Stirna, A. Fridrihsone, B. Lazdiņa, M. Misane, and D. Vilsone, “Biobased polyurethanes from rapeseed oil polyols: structure, mechanical and thermal properties,” J. Polym. Environ., Dec., 1–11 (2012).

  17. W. E. Worrall, Clays and Ceramic Raw Materials, Springer (1986).

  18. V. K. Kryzhanovskii, V. V. Burlov, A. D. Panimatchenko, and Yu. V. Kryzhanovskaya, Technical Properties of Polymer Materials [in Russian], Izdat. “Professiya,” St. Petersburg (2007).

  19. X. Liu and Q. Wu, “PP/clay nanocomposites prepared by grafting-melt intercalation,” Polymer, 42, 10013–10019 (2001).

    Article  CAS  Google Scholar 

  20. J.-J. Luo and I. M. Daniel, “Characterization and modeling of the mechanical behavior of polymer/clay nanocomposites,” Compos. Sci. Technol., 63, 1607–1616 (2003).

    Article  CAS  Google Scholar 

  21. N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, and R. E. Cohen, “Multiscale micromechanical modeling of polymer/clay nanocomposites and effective clay particle,” Polymer, 45, 487–506 (2004).

    Article  CAS  Google Scholar 

  22. R. D. Maksimov, S. Gaidukovs, M. Kalnins, J. Zicans, and E. Plume, “A nanocomposite based on a styrene-acrylate copolymer and native montmorillonite clay. 2. Modeling the elastic properties,” Mech. Compos. Mater., 42, No. 2, 163–172 (2006).

    Article  CAS  Google Scholar 

  23. R. Hill, “Elastic properties of reinforced solids; some theoretical principles,” J. Mech. Phys. Solids, 11, No. 5, 357–372 (1963).

    Article  Google Scholar 

  24. R. Hill, “A self-consistent mechanics of composite materials,” J. Mech. Phys. Solids, 13, No. 4, 213–222 (1965).

    Article  Google Scholar 

  25. T. Mori and K. Tanaka, “Average stress in matrix and average elastic energy of materials with misfitting inclusions,” Acta Metallurgica, 21, No. 5, 571–574 (1973).

    Article  Google Scholar 

  26. J. D. Eshelby, “The determination of the elastic field of an ellipsoidal inclusion and related problems,” Proc. Roy. Soc. Ser. A, 241, 376–396 (1957).

    Article  Google Scholar 

  27. R. D. Maksimov and E. Plume, “Elastic properties of a polyurethane/montmorillonite nanocomposite,” Mech. Compos. Mater., 48, No. 5, 487–498 (2012).

    Article  CAS  Google Scholar 

  28. A. Lagzdins, R. D. Maksimov, and E. Plume, “Anisotropy of elasticity of a composite with irregularly oriented anisometric filler particles,” Mech. Compos. Mater., 45, No. 4, 345–358 (2009).

    Article  Google Scholar 

  29. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, and T. Kurauchi, “Synthesis of Nylon6-clay hybrid,” J. Mater. Res., 8, 1179–1184 (1993).

    Article  CAS  Google Scholar 

  30. T. D. Fornes and D. R. Paul, “Modeling the properties of nylon6/clay nanocomposites using composite theories,” Polymer, 44, 4993–5013 (2003).

    Article  CAS  Google Scholar 

  31. W. N. Findley, J. S. Lai, and K. Onaran, Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover Pyblications, Inc., New York (1989).

    Google Scholar 

  32. R. D. Maksimov and E. Plume, “Effect of interphase layers on the elastic properties of a carbon-nanotube-reinforced composite,” Mech. Compos. Mater., 47, No. 3, 255–262 (2011).

    Article  CAS  Google Scholar 

  33. J.-L. Yang, Z. Zhang, A. K. Schlarb, and K. Friedrich, “On the characterization of tensile creep resistance of polyamide 66 nanocomposites. Part I. Experimental results and general discussions,” Polymer, 47, 2791–2801 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed within the framework of Project No. 2010/0214/2DP/2/1/1/1/0/10/APIA/VIAA/054 and financially supported by ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. D. Maksimov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 49, No. 4, pp. 501-518, July-August, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaidukov, S., Maksimov, R.D., Cabulis, U. et al. Mechanical properties of a rigid polyurethane/montmorillonite composite prepared by using a biopolyol. Mech Compos Mater 49, 333–344 (2013). https://doi.org/10.1007/s11029-013-9351-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-013-9351-5

Keywords

Navigation