Skip to main content

Microalgae Biofuels: A Green Renewable Resource to Fuel the Future

  • Chapter
  • First Online:
Green Technologies and Environmental Sustainability

Abstract

Intensive investigation and spectacular attention have been currently on microalgae fuels because they are the only sustainable alternate, inherently renewable, economical, and eco-friendly fuels unlike fossil fuels which are fast depleting. Microalgae are rapidly growing organisms and contain high amount of oil content when compared to season-depending terrestrial and food crops containing low percent dry weight of oil. The oil content of microalgae, a remarkable feature could be tuned higher especially under stress conditions as nutrient deficiency, in particular nitrogen. It is quite explicit and plausible that the conversion of microalgae into liquid fuels facilitates a sustainable, long-term fuel production circumscribed in an environmentally attuned manner. As the world population reaches ten billion mark and the sequels of negative environmental, economic and social impacts, the compromise based on first-generation biofuels seems quite irremediable. To surpass the existing problems, microalgae biofuels are envisaged as rather promising and potential due to high photosynthetic efficiency and growth rate in the development of about 70% of lipid content within the cells depending on species. Photo-bioreactors substitute the open raceway ponds for curtailing the problem of contamination and evaporation in open ponds. The production of value-added byproducts after biofuel extraction could also be the best outcome of microalgae residues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelaziz AEM, Leite GB, Hallenbeck PC (2013a) Addressing the challenges for sustainable production of algal biofuels: I. Algal strains and nutrient supply. Environ Technol 34:1783–1805

    Article  Google Scholar 

  • Abdelaziz AEM, Leite GB, Hallenbeck PC (2013b) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ Technol 34:1807–1836

    Article  Google Scholar 

  • Adenle AA, Haslam GE, Lee I (2013) Global assessment of research and development for algae biofuel production and its potential role for sustainable development in developing countries. Energy Policy 61:182–195

    Article  Google Scholar 

  • Aksoy F, Bayrakceken H, Eryilmaz T, Aksoy L (2011) Analyzing the impact of using different methyl esters in a diesel engine on engine performance and emissions. Energ Educ Sci Technol 27:25–34

    Google Scholar 

  • Alam F, Date A, Rasjidin R, Mobin S, Moria H, Baqui A (2012) Biofuel from algae—is it a viable alternative? Procedia Eng 49:221–227

    Article  Google Scholar 

  • Annual Report 2003–04, Planning Commission, Government of India, New Delhi

    Google Scholar 

  • Aristidou A, Penttila M (2000) Metabolic engineering applications to renewable resource utilization. Curr Opin Biotechnol 11:187–198

    Article  Google Scholar 

  • Arisz SA, Van Himbergen JAJ, Musgrave A, Van den Ende H, Munnik T (2000) Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry 53:265–270

    Article  Google Scholar 

  • Bagnoud-Velasquez M, Schmid-Staiger U, Peng G, Vogel F, Ludwig C (2015) First developments towards closing the nutrient cycle in a biofuel production process. Algal Res 8:76–82

    Article  Google Scholar 

  • Berg-Nilsen J (2006) Production of Micro-algae Based Products. Nordic Innovation Centre, Oslo, Norway, pp. 1–28

    Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Biophysiol 37:911–915

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of microalgae: pond, tank, tube and fermenters. J Biotechnol 70:313–321

    Article  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. Report prepared by Sustainable Energy Ireland, pp. 1–88

    Google Scholar 

  • Cambell PK, Beer T, Batten D (2011) Lifecycle assessment of biodiesel production from microalgae in ponds. Bioresour Technol 102:50–56

    Article  Google Scholar 

  • Canakci M, Vangerpen JH (1999) Biodiesel production via acid catalysis. Trans ASAE 42:1203–1210

    Article  Google Scholar 

  • Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506

    Article  Google Scholar 

  • Chen GQ, Jiang Y, Chen F (2008) Salt-induced alterations in lipid composition of diatom Nitzschia laevis bacillariophyceae under heterotrophic culture condition. J Phycol 44:1309–1314

    Article  Google Scholar 

  • Chen CY, Kao PC, Tsai CJ, Lee DJ, Chang JS (2013) Engineering strategies for simultaneous enhancement of C-phycocyanin production and CO2 fixation with Spirulina platensis. Bioresour Technol 145:307–312

    Article  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Collet P, Helias A, Lardon L, Ras M, Goy RA, Steyer JP (2011) Life cycle assessment of icroalgae culture coupled to biogas production. Bioresour Technol 102:207–214

    Article  Google Scholar 

  • Costa JA, de Morais MG (2011) The role of biochemical engineering in the production of biofuels from microalgae. Bioresour Technol 102(1):2–9

    Article  Google Scholar 

  • De la Torre Ugarte DG (2006) Bioenergy and agriculture: promises and challenges, 2020 vision for the food, agriculture and the environment, Focus No. 14, International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Demirbas A (2009) Production of biodiesel fuels from linseed oil using methanol and ethanol in non-catalytic SCF conditions. Biomass Bioenergy 33:113–118

    Article  Google Scholar 

  • Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79:331–337

    Article  Google Scholar 

  • Ehimen EA, Sun ZF, Carrington CG (2010) Variables affecting the in-situ transesterification of micro algae lipids. Fuel 89:677–684

    Article  Google Scholar 

  • El-Shoubaky GA, Moustafa AMY, Essam AE, Salem (2008) Comparative phytochemical investigation of beneficial essential fatty acids on a variety of marine seaweeds algae. Res J Phytochem 2: 18–26.

    Google Scholar 

  • Engler CR (1985) Disruption of microbial cells. In: Moo-Yoong M (ed) Comprehensive biotechnology, p 305–324

    Google Scholar 

  • Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Google Scholar 

  • Food and Agricultural Policy Research Institute (FAPRI) (2008) U.S. and World Agricultural Outlook

    Google Scholar 

  • Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416

    Article  Google Scholar 

  • Geciova J, Bury D, Jelen P (2002) Methods for disruption of microbial cells for potential use in the dairy industry—a review. Int Dairy J 12:541–553

    Article  Google Scholar 

  • Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  • Graeve M, Kattner G, Wiencke C, Karsten U (2002) Fatty acid composition of Arctic and antarctic macroalgae: indicator of phylogenetic and trophic relationships. Mar Ecol Prog Ser 231:67–74

    Article  Google Scholar 

  • Grima EM, Belarb EH, Fernandez FGA, Medina AR, Chisti Y (2003) Recovery of microalgal biomass and metabolites: process option and economics. Biotechnol Adv 20:491–515

    Article  Google Scholar 

  • Guillard RRL, Ryther JH (1992) Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt) and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  Google Scholar 

  • Guo X, Yao L, Huang Q (2015) Aeration and mass transfer optimization in a rectangular airlift loop photo-bioreactor for the production of microalgae. Bioresour Technol 190:189–195

    Article  Google Scholar 

  • Haas MJ, Wagner K (2011) Simplifying biodiesel production: the direct or in-situ trans-esterification of algal biomass. Eur J Lipid Sci Technol 113:1219–1229

    Article  Google Scholar 

  • Hazell P, Pachauri RK (2006) Bioenergy and agriculture: promises and challenges, 2020 vision for the food, agriculture and the environment, Focus No. 14, International Food Policy Research Institute, Washington, DC

    Google Scholar 

  • Himmel ME, Ding SY, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–807

    Article  Google Scholar 

  • Hossain AK, Davies PA (2012) Performance, emission and combustion characteristics of an indirect injection (IDI) multi-cylinder compression ignition (CI) engine operating on neat jatropha and karanj oils preheated by jacket water. Biomass Bioenergy 46:332–342

    Article  Google Scholar 

  • http://www.algaeindustrymagazine.com/deusel-project-practical-algal-based-biofuel-2018/

  • International Institute for Sustainable Development (ISDD) (2015). http://www.iisd.org/publications/biofuels%E2%80%94-what-cost-review-costs-and-benefits-eu-biofuel-policies

  • Jeffryes C, Severi V, Delhaye A, Urbain B, Grama BS, Agathos SN (2016) Energy conversion in an internally illuminated annular-plate airlift photo-bioreactor. Eng Life Sci 16:348–354

    Article  Google Scholar 

  • Johnson MB, Wen Z (2009) Production of biodiesel from the microalga Schizochytrium limacinum by direct algal biomass. Energy Fuel 23:5179–5183

    Article  Google Scholar 

  • Kammen DM (2006) Bioenergy in developing countries: experiences and Prospects in bioenergy and agriculture: promises and challenges. International Food Policy Research Institute 2020, Focus No. 14

    Google Scholar 

  • Karaj S, Muller J (2014) Effect of container depth and sedimentation time on quality of Jatropha curcas L oil. Fuel 118:206–213

    Article  Google Scholar 

  • Karp A, Richter GM (2011) Meeting the challenge of food and energy security. J Exp Bot 62:3263–3271

    Article  Google Scholar 

  • Khayoon MS, Olutoye MA, Hameed BH (2012) Utilization of crude karanj (pongamia pinnata) oil as a potential feedstock for the synthesis of fatty acid methyl esters. Bioresour Technol 111:175–179

    Article  Google Scholar 

  • Knothe G (2001) Historical perspective on vegetable oil-based diesel fuels. AOCS Inform 12:1103–1107

    Google Scholar 

  • Knothe G (2005) Dependence of biodiesel fuel properties on the surface of fatty acid alkyl esters. Fuel Process 86:1059–1070

    Article  Google Scholar 

  • Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresour Technol 150:377–386

    Article  Google Scholar 

  • Kong Q, Yu F, Chen P, Ruan R (2007) High oil content microalgae selection for biodiesel production. ASABE St Joseph Michigan Paper No. 077034

    Google Scholar 

  • Lang X, Dalai AK, Bakshi NN, Reaney MJ, Hertz PB (2001) Preparation and characterization of biodiesels from various bio-oils. Bioresour Technol 80:53–62

    Article  Google Scholar 

  • Lee HJ, Ahn DG (2015) Manufacture of large – sized flat panel airlift photo-bioreactor (FPA PBR) case with characteristic shapes using a thermoforming process. J Mech Sci Technol 29(12):5099–5105

    Article  Google Scholar 

  • Lee SJ, Yoon BD, Oh HM (1998) Rapid method for the determination of lipid from the green algae Botryococcus braunii. Biotechnol Tech 12:553–556

    Article  Google Scholar 

  • Lee JY, Yoo C, Jun SY, Ahn CY, Oh HM (2010) Comparison of several methods for effective lipid extraction from microalgae. Bioresour Technol 101:75–77

    Article  Google Scholar 

  • Leite GB, Hallenbeck PC (2012) Algae oil. In: Hallenbeck PC (ed) Microbial technologies in advanced biofuels production. Springer, New York, pp 231–259

    Chapter  Google Scholar 

  • Leite GB, Abdelaziz AEM, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141

    Article  Google Scholar 

  • Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biocatalysts and bioreactor design. Biotechnol Prog 24:815–820

    Google Scholar 

  • Li Y, Moore RB, Qin JG, Scott A, Ball AS (2013) Extractable liquid, its energy and hydrocarbon content in the green alga Botryococcus braunii. Biomass Bioenergy 52:103–112

    Article  Google Scholar 

  • Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Algal culturing techniques. Elsevier Academic Press, New York, pp 145–156

    Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (bacillariophyceae). J Phycol 36:510–522

    Article  Google Scholar 

  • Menetrez MY (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46(13):7073–7085

    Article  Google Scholar 

  • Metting FB (1996) Biodiversity and application of microalgae. J Ind Microbiol 17:477–489

    Article  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  Google Scholar 

  • Mihaela P, Josef R, Monica N, Rudolf Z (2013) Perspectives of safflower oil as biodiesel source for South Eastern Europe (comparative study: safflower, soybean and rapeseed). Fuel 111:114–119

    Article  Google Scholar 

  • Milano J, Ong HC, Masjuki HH, Chong WT, Lam MK, Loh PK, Vellayan V (2016) Microalgae biofuels as an alternative to fossil fuels for power generation. Renew Sust Energ Rev 58:180–197

    Article  Google Scholar 

  • Molina Grima E, Camacho Rubio F, Acien-Fernandez FG, Sanchez Perez J.A, Garcia Camacho F, Camacho Rubio (1999) Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal cultures. Biotechnol Bioeng 62:71–86.

    Google Scholar 

  • Monkonsit S, Powtongsook P (2011) Comparison between Airlift photo-bioreactor and bubble column for Skeletonema costatum cultivation. Eng J 15(4):53–64

    Article  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol 102:57–70

    Article  Google Scholar 

  • Ndimba BK, Ndimba RJ, Johnson TS, Waditee-Sirisattha R, Baba M, Sirisattha S, Shiraiwa Y, Agarwal GK, Rakwal R (2013) Biofuels as a sustainable energy source: an update of the applications of proteomics in bioenergy crops and algae. J Proteom 93:234–242

    Article  Google Scholar 

  • Niehaus TD, Okada S, Devarenne TP, Watt DS, Sviripa V, Chappell J (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii. PNAS 108:12260–12265

    Article  Google Scholar 

  • Piorreck M, Baasch KH, Pohl P (1984) Biomass production, total protein chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23:207–216

    Article  Google Scholar 

  • Popp J, Lakner Z, Harangi-Rakos ZM, Fari M (2014) The effect of bioenergy expansion: food, energy and environment. Renew Sust Energ Rev 32:559–578

    Article  Google Scholar 

  • Power Farming Magazine (1984) Product report: Alternate fuel could save money. 93(10):10

    Google Scholar 

  • Pulz O (2001) Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol 57:287–293

    Article  Google Scholar 

  • Rakesh S, Dhan DW, Radha P, Saxena AK, Saha S, Shukla M, Sharma K (2015) Cell disruption methods for improving lipid extraction efficiency in unicellular microalgae. Eng Life Sci 15(4):443–447

    Article  Google Scholar 

  • Rasmussen M (2007) Primary biomass production from marine algae. University of Aarhus: National Environmental Research Institute; Memorandum for VE-net

    Google Scholar 

  • Rodolfi L, Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  Google Scholar 

  • Sharma KK, Schuhmann SPM (2012) High lipid induction in microalgae for biodiesel production. Energies 5:1532–1553

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. department of energy’s aquatic species program-Biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, pp. 1–3

    Book  Google Scholar 

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27:409–416

    Article  Google Scholar 

  • Sivakumar G, Vail DR, Xu J, Burner DM, Lay JO, Ge X, Weathers PJ (2010) Bioethanol and biodiesel: alternative liquid fuels for future generations. Eng Life Sci 10:8–18

    Article  Google Scholar 

  • Sivakumar G, Xu J, Robert W, Thompson YY, Randol-Smith P, Weathers PJ (2011) Integrated green algal technology for bioremediation and biofuel. Bioresour Technol 107:1–9

    Article  Google Scholar 

  • Slade R, Bauen A (2013) Micro – algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenergy 53:29–38

    Article  Google Scholar 

  • Soman A, Shastri Y (2015) Optimization of novel photo-bioreactor design using computational fluid dynamics. Appl Energy 140:246–255

    Article  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuel 24:4062–4077

    Article  Google Scholar 

  • Tang H, Abunasser N, Garcia MED, Chen M, Ng S, Salley SO (2011) Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiseal. Appl Energy 88(10):3324–3330

    Article  Google Scholar 

  • Thomas DN (2002) Seaweeds: life series. Natural History Museum, London, p. 96

    Google Scholar 

  • Thompson GA (1996) Lipids and membrane function in green algae. Biochim Biophys Acta 1302:17–45

    Article  Google Scholar 

  • Tredici MR (1999) Bioreactors, photo. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, Hoboken, NJ, pp 395–441

    Google Scholar 

  • UN Report (2007) Sustainable bioenergy: a framework for decision makers. Food and Agriculture Organizations of the United Nations, Rome, p. 64

    Google Scholar 

  • UNDP (United Nations Development Programme) (2000) World energy assessment: energy and the challenge of sustainability, New York, pp. 1–508

    Google Scholar 

  • Velasquez-orta SB, Lee JGM, Harvey A (2012) Alkaline in-situ trans-esterification of Chlorella vulgaris. Fuel 94:544–550

    Article  Google Scholar 

  • Virot M, Tomao V, Ginies C, Visinoni F, Chemat F (2008) Microwave-integrated extraction of total fats and oils. J Chromatogr 64:1196–1197

    Google Scholar 

  • Wang R (1988) Development of biodiesel fuel. Taiyangneg Xuebao 9:434–436

    Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  Google Scholar 

  • Xu Z, Baicheng Z, Yiping Z, Zhaoling C, Wei C, Fan O (2002) A simple and low-cost airlift photo-bioreactor for microalgal mass culture. Biotechnol Lett 24:1767–1771

    Article  Google Scholar 

  • Zanin FB, Macedo A, Vinicios M, Archibha LR, Wendler EP, Dos Santos AA (2013) A one-pot glycerol-based additive-blended ethyl biodiesel production: a green process. Bioresour Technol 143:126–130

    Article  Google Scholar 

  • Ziolkowska JR, Simon L (2014) Recent developments and prospects for algae-based fuels in the US. Renew Sust Energ Rev 29:847–853

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mylsamy Prabhakaran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Prabhakaran, M., Sivasankar, V., Omine, K., Vasanthy, M. (2017). Microalgae Biofuels: A Green Renewable Resource to Fuel the Future. In: Singh, R., Kumar, S. (eds) Green Technologies and Environmental Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-50654-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50654-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50653-1

  • Online ISBN: 978-3-319-50654-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics