Skip to main content
Log in

Cosmological Distance Scale. Part 9. Deceleration Parameter

  • FUNDAMENTAL PROBLEMS IN METROLOGY
  • Published:
Measurement Techniques Aims and scope

The so-called “unexpected” results of statistical processing of data from increasingly more accurate astrophysical and gravitational measurements are examined. The reasons for the breakdown of the logic of statistical inference, which several leading experts have interpreted as a “metrological and scientific impasse” in cosmology, are pointed out. The data on type SN Ia supernovae used to detect the “accelerating expansion of the universe” are analyzed. It is shown that the errors in the Friedman–Robertson–Walker model as an equation for indirect measurement of distance are multiplicative. Here the hypothesis of a Gaussian form for these errors corresponds to a shift of –2.8% and a mean square deviation of 16.3% for a mean square deviation of the arithmetic mean of 1.8%. It is noted that using the mean square deviation of the arithmetic mean as an indicator of the accuracy of the scale is a crude mistake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Quinn, H. Parks, C. Speake, and R. Davis, Phys. Rev. Lett., 111, L 101102 (2013).

  2. G. Rosi, F. Sorrentino, L. Cacciapuoti, et al., Nature, 510, 518–521 (2014).

    Article  ADS  Google Scholar 

  3. “Measuring the gravitational constant as a cause for debate!” https://ru.wiki pedia.org/w/index.php?title=Gravitatsionnayapostoyannaya&oldid=10035653.

  4. S. F. Levin, Proc. Intern. Sci. Meeting PIRT-2003, Moscow, June 30–July 3, 2003, Coda, Moscow, Liverpool, Sunderland (2003), pp. 72–81.

  5. G. Feldman and R. Cousins., Phys. Rev. D, 57, No. (7), 3873–3889 (1998).

    Article  ADS  Google Scholar 

  6. S. F. Levin, “Anisotropy of the red shift,” Giperkompl. Chisla Geom. Fiz., 8, No. 1 (15), 70–101 (2011).

  7. S. F. Levin, Phys. At. Nucl., 78, No. 13, 1528–1533 (2015).

    Article  Google Scholar 

  8. D. Branch and G. A. Tammann, Ann. Rev. Astron. Astrophys., 30, 359–389 (1992).

    Article  ADS  Google Scholar 

  9. A. G. Riess et al., Astron. J., 116, 1009–1038 (1998).

    Article  ADS  Google Scholar 

  10. S. Perlmutter et al., Astrophys. J., 517, 565–586 (1999).

    Article  ADS  Google Scholar 

  11. J. L. Tonry et al., Astrophys. J., 594, 1 (2003).

    Article  ADS  Google Scholar 

  12. M. Visser, “Jerk, snap, and the cosmological equation of state,” http://ArXiv:gr-qc/0309109 v4 31 Mar 2004, acc. Jan. 12, 2019.

  13. A. G. Riess et al., ArXiv: 1604.01424v3 [astro-ph.CO] 9 Jun 2016.

  14. R. L. Beaton, W. L. Freedman, B. F. Madore, et al., ArXiv: 1604.01788v3 [astro-ph.CO] 11 Nov 2016.

  15. W. Freedman et al., ArXiv: astro-ph/0012376v1 18 Dec 2000.

  16. W. L. Freedman, Arxiv.org: 1706.02739 13 Jul 2017.

  17. A. Riess et al., accepted by Astrophys. J., March 26, 2019, ArXiv: 1903.07603v2 [astro-ph.CO] 27 Mar 2019.

  18. A. R. Sandage, Problems in Extragalactic Research, G. McVittie (ed.), Macmillan, New York (1962).

  19. C. Lang, Astrophysical Formulae [Russian translation], Mir, Moscow (1978).

  20. H. C. Arp, APEIRON, No. 9–10, 53–80 (1991).

    Google Scholar 

  21. H. C. Arp, Month. Not. Royal Astron. Soc., 258, 800–810 (1992).

    Article  ADS  Google Scholar 

  22. I. D. Karachentsev and D. I. Makaro, Proc. IAU Symp., 186, 109 (1999).

    ADS  Google Scholar 

  23. D. J. Schwarz and B. Weinhorst, Astron. Astrophys., 474, 717–729 (2007).

    Article  ADS  Google Scholar 

  24. S. F. Levin, Proc. XV Int. Sci. Meeting PIRT-2009, Moscow, July 6–9, 2009, BMSTU, Moscow (2009), pp. 234–240.

  25. Rong-Gen Cai and Zhong-Liang Tuo. ArXiv: 1109.0941v5 [astro-ph.CO] 11 Jan 2012.

  26. J. Sollerman et al., ArXiv: 0908.4276 v2 [astro-ph.CO] 1 IX 2009.

  27. G. Hinshaw et al., Preprint WMAP, Draft Version, Dec 19, 2012.

  28. S. Turyshev, ArXiv:1107.2886v1[gr-qc] 14 Jul 2011.

  29. J. Dunkley et al., Astrophys. J. Suppl., 180, 306–309 (2009).

    Article  ADS  Google Scholar 

  30. D. Larson et al., Preprint WMAP, 26.01.2010, http://lambda.gsfc.nasa.gov/product/map/dr4/pub_papers/sevenyear/powspecra/wmap_7yr_power_spectra.pdf.

  31. Planck Collaboration, Astron. Astrophys., 594, A13 (2016).

    Article  Google Scholar 

  32. S. F. Levin, “Photometric cosmological distance scale. Part 1. “Unexpected” results,” Izmer. Tekhn., No. 2, 3–8 (2014).

  33. B. P. Schmidt, “Accelerated expansion of the universe from observations of distant supernovae,” Usp. Fiz. Nauk, 183, No. 10, 1078–1089 (2013).

    Article  Google Scholar 

  34. S. F. Levin, “Cosmological distance scale. Part 8. Scale factor,” Izmer. Tekhn., No. 1, 8–15 (2019), DOI: 10.32446/ 0368-1025it.2019-1-8-15.

  35. M. V. Pruzhinskaya, Supernova Stars, Gamma-Bursts, and the Accelerated Expansion of the Universe: Cand. Dissert. in Phys.-Math. Sciences, Lomonosov MSU (2014).

  36. S. F. Levin, “Cosmological distance scale. Part 6. Statistical anisotropy of red shift,” Izmer. Tekhn., No. 5, 3–6 (2017).

  37. S. F. Levin, Optimal Interpolation Filtering of Statistical Characteristics of Random Functions in a Deterministic Version of the Monte Carlo Method and the Red Shift Law, NSK AN SSSR, Moscow (1980).

  38. F. Hoyle, in: Gravity, Neutrino and the Universe, J. Wheeler (ed.) [Russian translation], Inostrannaya Literatura, Moscow (1962), pp. 372–400.

  39. O. Heckmann, Theorien der Kosmologie, Springer-Verlag, Berlin, Heidelberg (1942).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Levin.

Additional information

Translated from Izmeritel’naya Tekhnika, No. 10, pp. 8–14, October, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levin, S.F. Cosmological Distance Scale. Part 9. Deceleration Parameter. Meas Tech 62, 855–862 (2020). https://doi.org/10.1007/s11018-020-01705-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11018-020-01705-3

Keywords

Navigation