Skip to main content

Advertisement

Log in

Coordinated optimization of locomotion velocity and energy consumption in vibration-driven system

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Worm-like robots have attracted more and more attention due to its excellent ability of locomotion in narrow terrains. Vibration-driven system as a discrete way for modelling locomotion of the worm-like robots has been frequently analyzed and applied. However, it is very challenging for the vibration-driven systems due to the non-smooth friction to realize efficiently high velocity and low energy consumption locomotion. Motived by such problem, this paper considers a classical vibration-driven system to optimize both the locomotion velocity and energy consumption. It is a bi-objective coordinated optimization in essence since it is impossible for these two indexes to reach the optimal values simultaneously. Then a usual Pareto front method is employed to solve such bi-objective optimization problem. Unfortunately, the obtained Pareto front only optimizes the dimensionless driving parameters for a very small friction environment. Therefore, the Pareto front method is extended and improved to reach a coordinated optimization for different friction environments. It is seen that the parameters determined by the non-Pareto solution cannot be optimized and should be excluded from the design. The results show that there are two typical Pareto region, namely, one is continuous corresponding to a small friction environment but another is discontinuous to a large friction environment. Consequently, the driving amplitude and frequency determined by combining the Pareto region with the stick–slip locomotion region are considered as the optimal parameters to achieve in the coordinated optimization of the locomotion velocity and energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Niu H, Feng R, Xie Y, Jiang B, Sheng Y, Yu Y, Baoyin H, Zeng X (2020) MagWorm: a biomimetic magnet embedded worm-like soft robot. Soft Rob. https://doi.org/10.1089/soro.2019.0167

    Article  Google Scholar 

  2. Glass P, Cheung E, Sitti M (2008) A legged anchoring mechanism for capsule endoscopes using micropatterned adhesives. IEEE Trans Biomed Eng 55(12):2759–2767

    Article  Google Scholar 

  3. Yan Y, Liu Y, Manfredi L, Prasad S (2019) Modelling of a vibro-impact self-propelled capsule in the small intestine. Nonlinear Dyn 96:123–144

    Article  Google Scholar 

  4. Tang Y, Chen C, Khaligh A, Penskiy I, Bergbreiter S (2014) An ultracompact dual-stage converter for driving electrostatic actuators in mobile microrobots. IEEE Trans Power Electron 29(6):2991–3000

    Article  Google Scholar 

  5. Kandhari A, Mehringer A, Chiel HJ, Quinn RD, Daltorio KA (2019) Design and actuation of a fabric-based worm-like robot. Biomimetics 4(1):13

    Article  Google Scholar 

  6. Diao B, Zhang X, Fang H, Xu J (2021) Bi-objective optimization for improving the locomotion performance of the vibration-driven robot. Arch Appl Mech 91:2073–2088

    Article  Google Scholar 

  7. Fang H, Wang C, Li S, Jian X, Wang KW (2014) Design and experimental gait analysis of a multi-segment in-pipe robot inspired by earthworm’s peristaltic locomotion. Bioinspiration, Biomim, Bioreplication 9055:90550H

    Google Scholar 

  8. Fang H, Li S, Wang KW, Xu J (2015) Phase coordination and phase-velocity relationship in metameric robot locomotion. Bioinspiration Biomimetics 10(6):066006

    Article  Google Scholar 

  9. Zhan X, Fang H, Jian Xu, WangKon-Well, (2019) Planar locomotion of earthworm-like metameric robots. Int J Robotics Res 38(14):1751–1774

    Article  Google Scholar 

  10. Tang Z, Lu J, Wang Z, Chen W, Feng H (2020) Design of a new air pressure perception multi-cavity pneumatic-driven earthworm-like soft robot. Auton Robot. https://doi.org/10.1007/s10514-019-09892-x

    Article  Google Scholar 

  11. Blekhman II (2000) Vibrational mechanics: nonlinear dynamics effects, general approach, applications. Singapore: World scientific

  12. Chernous’ko FL (2005) On the motion of a body containing a movable internal mass. Dokl Phys 50(11):593–597

    Article  Google Scholar 

  13. Xu J, Fang H (2019) Improving performance: recent progress on vibration-driven locomotion systems. Nonlinear Dyn 98(4):2651–2669

    Article  MathSciNet  Google Scholar 

  14. Liu Y, Páez Chávez J, Zhang J, Tian J, Guo B, Prasad S (2020) The vibro-impact capsule system in millimetre scale: numerical optimisation and experimental verification. Meccanica 55(10):1885–1902

    Article  MathSciNet  Google Scholar 

  15. Yan Y, Liu Y, Páez Chávez J, Zonta F, Yusupov A (2017) Proof-of-concept prototype development of the self-propelled capsule system for pipeline inspection. Meccanica 53(8):1997–2012

    Article  MathSciNet  Google Scholar 

  16. Chernous’ko FL, (2006) Analysis and optimization of the motion of a body controlled by means of a movable internal mass. J Appl Math Mech 70(6):819–842

    Article  MathSciNet  Google Scholar 

  17. Chernous’ko FL (2008) On the optimal motion of a body with an internal mass in a resistive medium. J Vib Control 14(1–2):197–208

    Article  MathSciNet  Google Scholar 

  18. Fang H, Xu J (2010) Dynamic analysis and optimization of a three-phase control mode of a mobile system with an internal mass. J Vib Control 17(1):19–26

    Article  MathSciNet  MATH  Google Scholar 

  19. Fang H, Xu J (2012) Controlled motion of a two-module vibration-driven system induced by internal acceleration-controlled masses. Arch Appl Mech 82(4):461–477

    Article  MATH  Google Scholar 

  20. Fang H, Xu J (2014) Stick-Slip Effect in a Vibration Driven System With Dry Friction: Sliding Bifurcations and Optimization. J Appl Mech 81(5):051001

    Article  Google Scholar 

  21. Bolotnik NN, Zeidis IM, Zimmermann K, Yatsun SF (2006) Dynamics of controlled motion of vibration-driven system. J Comput Syst Sci Int 45(5):831–840

    Article  MATH  Google Scholar 

  22. Nguyen KT, La NT, Ho KT, Ngo QH, Nguyen VD (2021) The effect of friction on the vibro-impact locomotion system: modeling and dynamic response. Meccanica 56:2121–2137

    Article  MathSciNet  Google Scholar 

  23. Sobolev NA, Sorokin KS (2007) Experimental investigation of a model of a vibration-driven robot with rotating masses. J Comput Syst Sci Int 46(5):826–835

    Article  MATH  Google Scholar 

  24. Chen Q, Xu J (2018) Locomotion of two vibration-driven modules connected by a mechanical position limiter. Int J Mech Sci 137:252–262

    Article  Google Scholar 

  25. Liu Y, Pavlovskaia E, Wiercigroch M, Peng Z (2015) Forward and backward motion control of a vibro-impact capsule system. Int J Non-Linear Mech. 70:30–46

    Article  Google Scholar 

  26. Yang C, Li Z, Li J (2013) Trajectory planning and optimized adaptive control for a class of wheeled inverted pendulum vehicle models. IEEE Trans Cybern 43(1):24–36

    Article  MathSciNet  Google Scholar 

  27. Fang H, Wang KW (2017) Piezoelectric vibration-driven locomotion systems: exploiting resonance and bistable dynamics. J Sound Vib 391:153–169

    Article  Google Scholar 

  28. Liu Y, Pavlovskaia E, Hendry D, Wiercigroch M (2013) Vibro-impact responses of capsule system with various friction models. Int J Mech Sci 72:39–54

    Article  Google Scholar 

  29. Chávez JP, Liu Y, Pavlovskaia E, Wiercigroch M (2016) Path-following analysis of the dynamical response of a piecewise-linear capsule system. Commun Nonlinear Sci Numer Simul 37:102–114

    Article  MathSciNet  MATH  Google Scholar 

  30. Fang H, Xu J (2011) Dynamics of a mobile system with an internal acceleration-controlled mass in a resistive medium. J Sound Vib 330(16):4002–4018

    Article  Google Scholar 

  31. Liu P, Yu H, Cang S (2018) Geometric analysis-based trajectory planning and control for underactuated capsule systems with viscoelastic property. Trans Inst Meas Control 40(7):2416–2427

    Article  Google Scholar 

  32. Du Z, Fang H, Zhan X, Xu J (2018) Experiments on vibration driven stick-slip locomotion: a sliding bifurcation perspective. Mech Syst Signal Process 105:261–275

    Article  Google Scholar 

  33. Egorov AG, Zakharova OS (2010) The energy-optimal motion of a vibration-driven robot in a resistive medium. J Appl Math Mech 74(4):443–451

    Article  MathSciNet  MATH  Google Scholar 

  34. Egorov AG, Zakharova OS (2015) The energy-optimal motion of a vibration-driven robot in a medium with a inherited law of resistance. J Comput Syst Sci Int 54(3):495–503

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu P, Yu H, Cang S (2018) Optimized adaptive tracking control for an underactuated vibro-driven capsule system. Nonlinear Dyn 94:1803–1817

    Article  Google Scholar 

  36. Li H, Furuta K, Chernous’ko FL (2006) Motion generation of the capsubot using internal force and static friction. In: Proceedings of the IEEE International Conference on Decision and Control, San Diego, US. 6575–6580.

  37. Liu Y, Wiercigroch M, Pavlovskaia E, Yu HN (2013) Modelling of a vibro-impact capsule system. Int J Mech Sci 66:2–11

    Article  Google Scholar 

  38. Yan Y, Liu Y, Liao MA (2017) comparative study of the vibro-impact capsule systems with one-sided and two-sided constraints. Nonlinear Dyn 89(2):1063–1087

    Article  Google Scholar 

  39. Filippov AF (1988) Differential equations with discontinuous righthand sides. Springer, Dordrecht

    Book  Google Scholar 

  40. Ancona F, Bressan A (1999) Patchy vector fields and asymptotic stabilization. Esaim-Cocv 4:445–472

    Article  MathSciNet  MATH  Google Scholar 

  41. Cortes J (2008) Discontinuous dynamical systems: a tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Syst Mag 28(3):36–73

    Article  MathSciNet  MATH  Google Scholar 

  42. di Bernardo M, Kowalczyk P, Nordmark A (2002) Bifurcations of dynamical systems with sliding: derivation of normalform mappings. Phys D Nonlinear Phenom 170(3–4):175–205

    Article  MATH  Google Scholar 

  43. di Bernardo M, Budd M, Champneys A, Kowalczyk P (2008) Piecewise-smooth dynamical systems: theory and applications. Springer, London

    MATH  Google Scholar 

  44. Antali M, Stepan G (2018) Sliding and crossing dynamics in extended filippov systems. SIAM J Appl Dyn Syst 17(1):823–858

    Article  MathSciNet  MATH  Google Scholar 

  45. Tusar T, Filipic B (2015) Visualization of pareto front approximations in evolutionary multiobjective optimization: a critical review and the prosection method. IEEE Trans Evol Comput 19(2):225–245

    Article  Google Scholar 

  46. Hua Y, Liu Q, Hao K, Jin Y (2021) A survey of evolutionary algorithms for multi-objective optimization problems with irregular pareto fronts. IEEE/CAA J Autom Sinica. https://doi.org/10.1109/JAS.2021.1003817

    Article  MathSciNet  Google Scholar 

  47. Deb K, Pratap A, Agarwal S, MeyarivanT, (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197

    Article  Google Scholar 

  48. Zhan X, Xu J, Fang H (2020) In-plane gait planning for earthworm-like metameric robots using genetic algorithm. Bioinspiration & Biomimetics 15(5):056012

    Article  Google Scholar 

  49. Baumgartner U, Magele C, Renhart W (2004) Pareto optimality and particle swarm optimization. IEEE Trans Magn 40(2):1172–1175

    Article  Google Scholar 

  50. Yaochu Y, Sendhoff B (2008) Pareto-based multiobjective machine learning: an overview and case studies. IEEE Trans Syst, Man, Cybernetics, Part C (Appl Rev) 38(3):397–415. https://doi.org/10.1109/TSMCC.2008.919172

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Program of the National Natural Science Foundation of China under Grant No. 11932015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The locomotion of the vibration-driven system is divided in four region E1-E4 in A-k plane, as shown in Fig. 2.

For region E1, the system performs reciprocating motion, and sticks twice in a cycle, as shown in Fig. 3a. The solution of Eq. (5) is expressed as

$$v_{ + }^{*} (t^{*} ) = - \cos t^{*} + \sqrt {1 - (Ak)^{2} } - Ak(t^{*} - t_{{n_{s} 1}}^{*} ),\;\;v_{ - }^{*} (t^{*} ) = - \cos t^{*} - \sqrt {1 - A^{2} } + A(t^{*} - t_{{n_{s} 3}}^{*} ),$$
(A1)

where \(v_{ + }^{*}\) and \(v_{ - }^{*}\) respectively describe the dimensionless velocity v* > 0 and v* < 0 and \(t_{{n_{s} 1}}^{*}\) and \(t_{{n_{s} 3}}^{*}\) are defined as Eq. (14).

For region E2, the system can perform directional motion only in this region, with one sticking motion in a cycle, as shown in Fig. 3b. The solution of Eq. (5) is expressed as

$$v_{ + }^{*} (t^{*} ) = - \cos t^{*} + \sqrt {1 - (Ak)^{2} } - Ak(t^{*} - t_{{n_{s} 1}}^{*} ).$$
(A2)

Notably, if 0 < A < 1, system is stuck when \(t \in (t_{{n_{s} 4}}^{*} + 2\pi ,t_{{(n_{s} + 1)1}}^{*} + 2\pi )\), and if \(A \ge 1\), it happens when \(t \in (t_{{n_{s} 2}}^{*} + 2\pi ,t_{{(n_{s} + 1)1}}^{*} + 2\pi )\), where \(t_{{n_{s} 2}}^{*}\) and \(t_{{n_{s} 4}}^{*}\) are defined as Eq. (14).

For region E3, the system performs reciprocating motion, sticking once in a cycle, as shown in Fig. 3d. The solution of Eq. (5) is given by

$$v_{ + }^{*} (t^{*} ) = - \cos t^{*} + \sqrt {1 - (Ak)^{2} } - Ak(t^{*} - t_{{n_{s} 1}}^{*} ),\;\;\;v_{ - }^{*} (t^{*} ) = - \cos t^{*} + \cos t_{x}^{*} + A(t^{*} - t_{x}^{*} ),$$
(A3)

where \(t_{x}^{*}\) satisfies \(v_{ - }^{*} (t_{x}^{*} ) = 0\) and \(t_{x}^{*} \in (t_{{n_{s} 3}} ,t_{{n_{s} 4}} )\),

$$- \cos t_{x}^{*} + \sqrt {1 - (Ak)^{2} } - Ak(t_{x}^{*} - t_{{n_{s} 1}} ) = 0.$$
(A4)

For region E4, the system performs reciprocating motion without sticking, as shown in Fig. 3e. The solution of Eq. (5) is

$$v_{ + }^{*} (t^{*} ) = - \cos t^{*} + \cos t_{y}^{*} - Ak(t^{*} - t_{y}^{*} ),\;\;\;v_{ - }^{*} (t^{*} ) = - \cos t^{*} + \cos t_{x}^{*} + A(t^{*} - t_{x}^{*} ),$$
(A5)

where \(t_{y}^{*} \in (t_{{n_{s} 1}}^{*} ,t_{{n_{s} 2}}^{*} )\) and \(t_{x}^{*} \in (t_{{n_{s} 3}} ,t_{{n_{s} 4}} )\). It is seen from Eq. (A5) that \(v_{ + }^{*} (t_{y}^{*} ) = 0\) and \(v_{ - }^{*} (t_{x}^{*} ) = 0\). One has \(v_{ + }^{*} (t_{x}^{*} ) = 0\) and \(v_{ - }^{*} (t_{y}^{*} + 2\pi ) = 0\) since \(v_{ + }^{*}\) and \(v_{ - }^{*}\) are continuous at \(t_{x}^{*}\) and \(t_{y}^{*}\), and they are periodic in \(2\pi\). Thus, the Eq. (A5) yields

$$t_{x}^{*} = t_{y}^{*} + \frac{2\pi }{{1 + k}},\;\;\; - \cos (t_{y}^{*} + \frac{2\pi }{{1 + k}}) + \cos t_{y}^{*} - Ak(\frac{2\pi }{{1 + k}}) = 0,$$
(A6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, J., Zhang, S. & Xu, J. Coordinated optimization of locomotion velocity and energy consumption in vibration-driven system. Meccanica 58, 371–385 (2023). https://doi.org/10.1007/s11012-022-01488-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-022-01488-7

Keywords

Navigation