Skip to main content
Log in

Upper bound analysis of wire flat rolling with experimental and FEM verifications

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

In this paper, an upper bound analysis is developed to calculate the rolling torque in the wire flat rolling process. Streamlines are defined parametrically in the deforming region and the formulation of the admissible velocity field are developed. The internal and frictional power terms are obtained from the upper bound solution. Through the analysis, the rolling torque is obtained. Furthermore, the effects of the roll speed, wire diameter, and reduction in height on the rolling torque are studied. In addition, the experimental and numerical investigations are performed to verify the proposed theoretical model. A very good agreement is obtained between the analytical results with those from the simulation and the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Carlsson B (1998) The contact pressure distribution in flat rolling of wire. J Mater Process Technol 73(1):1–6

    Article  Google Scholar 

  2. Vallellano C, Cabanillas P, Garcia-Lomas F (2008) Analysis of deformations and stresses in flat rolling of wire. J Mater Process Technol 195(1):63–71

    Article  Google Scholar 

  3. Iankov R (2003) Finite element simulation of profile rolling of wire. J Mater Process Technol 142(2):355–361

    Article  Google Scholar 

  4. Kazeminezhad M, Taheri AK (2006) The prediction of macroscopic shear bands in flat rolled wire using the finite and slab element method. Mater Lett 60(27):3265–3268

    Article  Google Scholar 

  5. Kazeminezhad M, Taheri AK (2007) Deformation inhomogeneity in flattened copper wire. Mater Des 28(7):2047–2053

    Article  Google Scholar 

  6. Kazeminezhad M, Karimi Taheri A (2008) The effect of 3D and 2D deformations on flattened wires. J Mater Process Technol 202(1):553–558

    Article  Google Scholar 

  7. Parvizi A, Pasoodeh B, Abrinia K, Akbari H (2015) Analysis of curvature and width of the contact area in asymmetrical rolling of wire. J Manuf Process 20:245–249

    Article  Google Scholar 

  8. Parvizi A, Pasoodeh B, Abrinia K (2016) An analytical approach to asymmetrical wire rolling process with finite element verification. Int J Adv Manuf Technol 85(1–4):381–389

    Article  Google Scholar 

  9. Manesh HD, Taheri AK (2005) Theoretical and experimental investigation of cold rolling of tri-layer strip. J Mater Process Technol 166(2):163–172. https://doi.org/10.1016/j.jmatprotec.2004.08.010

    Article  Google Scholar 

  10. Sheikh H (2009) Thermal analysis of hot strip rolling using finite element and upper bound methods. Appl Math Model 33(5):2187–2195. https://doi.org/10.1016/j.apm.2008.05.022

    Article  MathSciNet  MATH  Google Scholar 

  11. Haghighat H, Saadati P (2015) An upper bound analysis of rolling process of non-bonded sandwich sheets. Trans Nonferr Met Soc China 25(5):1605–1613. https://doi.org/10.1016/S1003-6326(15)63764-5

    Article  Google Scholar 

  12. Liu Y-M, Ma G-S, Zhang D-H, Zhao D-W (2015) Upper bound analysis of rolling force and dog-bone shape via sine function model in vertical rolling. J Mater Process Technol 223(Supplement C):91–97. https://doi.org/10.1016/j.jmatprotec.2015.03.051

    Article  Google Scholar 

  13. Hua L, Deng J, Qian D, Ma Q (2015) Using upper bound solution to analyze force parameters of three-roll cross rolling of rings with small hole and deep groove. Int J Adv Manuf Technol 76(1):353–366. https://doi.org/10.1007/s00170-014-6107-x

    Article  Google Scholar 

  14. Peng W, Zhang D, Zhao D (2017) Application of parabolic velocity field for the deformation analysis in hot tandem rolling. Int J Adv Manuf Technol 91(5):2233–2243. https://doi.org/10.1007/s00170-016-9936-y

    Article  Google Scholar 

  15. Peng W, Ding JG, Zhang DH, Zhao DW (2017) A novel approach for the rolling force calculation of cold rolled sheet. J Braz Soc Mech Sci Eng. https://doi.org/10.1007/s40430-017-0774-0

    Article  Google Scholar 

  16. Zhang D-H, Liu Y-M, Sun J, Zhao D-W (2016) A novel analytical approach to predict rolling force in hot strip finish rolling based on cosine velocity field and equal area criterion. Int J Adv Manuf Technol 84(5):843–850. https://doi.org/10.1007/s00170-015-7692-z

    Article  Google Scholar 

  17. Sonboli A, Serajzadeh S (2010) Prediction of thermal stresses and temperature field in work rolls during hot strip rolling process. Mater Sci Technol 26(3):343–351. https://doi.org/10.1179/174328409X407560

    Article  Google Scholar 

  18. Amjadian P, Haghighat H (2017) An analytical approach to prediction of internal defects during the flat rolling process of strain-hardening materials. J Theor Appl Mech 55(4):1341–1353. https://doi.org/10.15632/jtam-pl.55.4.1341

    Article  Google Scholar 

  19. Serajzadeh S, Mahmoodkhani Y (2008) A combined upper bound and finite element model for prediction of velocity and temperature fields during hot rolling process. Int J Mech Sci 50(9):1423–1431

    Article  Google Scholar 

  20. Abrinia K, Fazlirad A (2009) Three-dimensional analysis of shape rolling using a generalized upper bound approach. J Mater Process Technol 209(7):3264–3277

    Article  Google Scholar 

  21. Abrinia K, Fazlirad A (2010) Investigation of single pass shape rolling using an upper bound method. J Mater Eng Perform 19(4):541–552

    Article  Google Scholar 

  22. Liu Y-M, Ma G-S, Zhao D-W, Zhang D-H (2015) Analysis of hot strip rolling using exponent velocity field and MY criterion. Int J Mech Sci 98(Supplement C):126–131. https://doi.org/10.1016/j.ijmecsci.2015.04.017

    Article  Google Scholar 

  23. Asgharzadeh A, Serajzadeh S (2016) Development of a stream function-upper bound analysis applicable to the process of plate rolling. Multidiscip Model Mater Struct 12(2):254–274. https://doi.org/10.1108/MMMS-06-2015-0029

    Article  Google Scholar 

  24. Li X, Wang H, Liu Y, Zhang D, Zhao D (2017) Analysis of edge rolling based on continuous symmetric parabola curves. J Braz Soc Mech Sci Eng 39(4):1259–1268. https://doi.org/10.1007/s40430-016-0587-6

    Article  Google Scholar 

  25. Parvizi A, Abrinia K (2014) A two dimensional upper bound analysis of the ring rolling process with experimental and FEM verifications. Int J Mech Sci 79:176–181

    Article  Google Scholar 

  26. Abrinia K, Ghorbani M (2012) Theoretical and experimental analyses for the forward extrusion of nonsymmetric sections. Mater Manuf Process 27(4):420–429

    Article  Google Scholar 

  27. Kazeminezhad M, Taheri AK (2005) A theoretical and experimental investigation on wire flat rolling process using deformation pattern. Mater Des 26(2):99–103

    Article  Google Scholar 

Download references

Funding

This study was funded by Iran National Science Foundation (INSF) (Grant Number 95829922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Seyyed Nosrati.

Ethics declarations

Conflict of interest

Co-Author Ali Parvizi has received research Grants from Iran National Science Foundation (INSF).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The general velocity vector equation for any arbitrary point in the deformation zone is expressed as:

$$\vec{V} = \frac{1}{{\left( {V_{x}^{2} + V_{y}^{2} + V_{z}^{2} } \right)^{1/2} }} \times \left( {V_{x} i + V_{y} j + V_{z} k} \right).$$
(36)

The tangent vector for each point in the flow line is as follows:

$$\vec{T} = \frac{1}{{\left( {T_{1}^{2} + T_{2}^{2} + T_{3}^{2} } \right)^{1/2} }} \times \left( {T_{1} i + T_{2} j + T_{3} k} \right).$$
(37)

where

$$\begin{aligned} T_{1} & = \frac{\partial X}{\partial t} \\ T_{2} & = \frac{\partial Y}{\partial t} \\ T_{3} & = \frac{\partial Z}{\partial t} \\ \end{aligned}$$
(38)

Assuming that each particle that flows along a flowline in the deforming region and that the velocities of all these particles are tangent to their respective flowlines at all times, the following admissible velocity field may be derived with the volume constancy condition:

$$\frac{{V_{x} }}{{T_{1} }} = \frac{{V_{y} }}{{T_{2} }} = \frac{{V_{z} }}{{T_{3} }}$$
(39)

The Eq. (39) can be rewritten as follows:

$$\begin{aligned} V_{y} & = \frac{{T_{2} }}{{T_{3} }}V_{z} \\ V_{x} & = \frac{{T_{1} }}{{T_{3} }}V_{z} \\ \end{aligned}$$
(40)

Therefore, the velocity field for each arbitrary particle in the deformation zone is expressed as:

$$V_{x} = \frac{{f_{t} }}{{h_{t} }}V_{z} \quad V_{y} = \frac{{g_{t} }}{{h_{t} }}V_{z} \quad V_{z} = M\left( {u,q,t} \right)$$
(41)

where M(u, q, t) is an unknown function that satisfies the incompressibility conditions expressed as follows:

$$\frac{{\partial V_{x} }}{\partial X} + \frac{{\partial V_{y} }}{\partial Y} + \frac{{\partial V_{z} }}{\partial Z} = 0$$
(42)

Introducing partial differentiation in three dimensions:

$$\left( {\partial V_{i} /\partial X_{k} ) = \mathop \sum \limits_{j = 1} (\left( {\partial V_{i} /\partial U_{j} } \right) \cdot \left( {\partial U_{j} /\partial X_{k} } \right)} \right)$$
(43)

or in matrix format:

$$\frac{{\partial V_{i} }}{{\partial X_{k} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial V_{x} }}{\partial x}} & {\frac{{\partial V_{x} }}{\partial y}} & {\frac{{\partial V_{x} }}{\partial z}} \\ {\frac{{\partial V_{y} }}{\partial x}} & {\frac{{\partial V_{y} }}{\partial y}} & {\frac{{\partial V_{y} }}{\partial z}} \\ {\frac{{\partial V_{z} }}{\partial x}} & {\frac{{\partial V_{z} }}{\partial y}} & {\frac{{\partial V_{z} }}{\partial z}} \\ \end{array} } \right]$$
(44)
$$\frac{{\partial V_{i} }}{{\partial u_{j} }} = \left[ {\begin{array}{*{20}c} {\frac{{\partial V_{x} }}{\partial u}} & {\frac{{\partial V_{x} }}{\partial q}} & {\frac{{\partial V_{x} }}{\partial t}} \\ {\frac{{\partial V_{y} }}{\partial u}} & {\frac{{\partial V_{y} }}{\partial q}} & {\frac{{\partial V_{y} }}{\partial t}} \\ {\frac{{\partial V_{z} }}{\partial u}} & {\frac{{\partial V_{z} }}{\partial q}} & {\frac{{\partial V_{z} }}{\partial t}} \\ \end{array} } \right]$$
(45)
$$\frac{{\partial X_{k} }}{{\partial u_{j} }} = \left[ {\begin{array}{*{20}c} {\frac{\partial x}{\partial u}} & {\frac{\partial x}{\partial q}} & {\frac{\partial x}{\partial t}} \\ {\frac{\partial y}{\partial u}} & {\frac{\partial y}{\partial q}} & {\frac{\partial y}{\partial t}} \\ {\frac{\partial z}{\partial u}} & {\frac{\partial z}{\partial q}} & {\frac{\partial z}{\partial t}} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {f_{u} } & {f_{q} } & {f_{t} } \\ {g_{u} } & {g_{q} } & {g_{t} } \\ {h_{u} } & {h_{q} } & {h_{t} } \\ \end{array} } \right] = J$$
(46)

where J is the Jacobian for conversion of coordinates from x, y, z to u, q, t. Therefore:

$$\frac{{\partial u_{j} }}{{\partial X_{k} }} = J^{ - 1} = \frac{1}{\left| J \right|}\left[ {\begin{array}{*{20}c} {I_{11} } & {I_{12} } & {I_{13} } \\ {I_{21} } & {I_{22} } & {I_{23} } \\ {I_{31} } & {I_{32} } & {I_{33} } \\ \end{array} } \right]$$
(47)

where

$$\left| J \right| = \frac{{\partial \left( {x,y,z} \right)}}{{\partial \left( {u,q,t} \right)}} = \left| {\begin{array}{*{20}c} {\frac{\partial x}{\partial u}} & {\frac{\partial x}{\partial q}} & {\frac{\partial x}{\partial t}} \\ {\frac{\partial y}{\partial u}} & {\frac{\partial y}{\partial q}} & {\frac{\partial y}{\partial t}} \\ {\frac{\partial z}{\partial u}} & {\frac{\partial z}{\partial q}} & {\frac{\partial z}{\partial t}} \\ \end{array} } \right|$$
(48)

Replacing (44), (45) and (47) in (43):

$$\left[ {\begin{array}{*{20}c} {\frac{{\partial V_{x} }}{\partial x}} & {\frac{{\partial V_{x} }}{\partial y}} & {\frac{{\partial V_{x} }}{\partial z}} \\ {\frac{{\partial V_{y} }}{\partial x}} & {\frac{{\partial V_{y} }}{\partial y}} & {\frac{{\partial V_{y} }}{\partial z}} \\ {\frac{{\partial V_{z} }}{\partial x}} & {\frac{{\partial V_{z} }}{\partial y}} & {\frac{{\partial V_{z} }}{\partial z}} \\ \end{array} } \right] = \frac{1}{\left| J \right|}\left[ {\begin{array}{*{20}c} {\frac{{\partial V_{x} }}{\partial u}} & {\frac{{\partial V_{x} }}{\partial q}} & {\frac{{\partial V_{x} }}{\partial t}} \\ {\frac{{\partial V_{y} }}{\partial u}} & {\frac{{\partial V_{y} }}{\partial q}} & {\frac{{\partial V_{y} }}{\partial t}} \\ {\frac{{\partial V_{z} }}{\partial u}} & {\frac{{\partial V_{z} }}{\partial q}} & {\frac{{\partial V_{z} }}{\partial t}} \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {I_{11} } & {I_{12} } & {I_{13} } \\ {I_{21} } & {I_{22} } & {I_{23} } \\ {I_{31} } & {I_{32} } & {I_{33} } \\ \end{array} } \right]$$
(49)

The elements of the J−1 matrix can be calculated as follows:

$$\begin{aligned} I_{11} & = g_{q} h_{t} - g_{t} h_{q} \\ I_{12} & = - f_{q} h_{t} + f_{t} h_{q} \\ I_{13} & = f_{q} g_{t} - f_{t} g_{q} \\ I_{21} & = - g_{u} h_{t} + g_{t} h_{u} \\ I_{22} & = f_{u} h_{t} - f_{t} h_{u} \\ I_{23} & = - f_{u} g_{t} + f_{t} g_{u} \\ I_{31} & = g_{u} h_{q} - g_{q} h_{u} \\ I_{32} & = - f_{u} h_{q} + f_{q} h_{u} \\ I_{33} & = f_{u} g_{q} - f_{q} g_{u} \\ \end{aligned}$$
(50)

Differentiating (41) with respect to u, q, t gives:

$$\begin{aligned} \frac{{\partial V_{x} }}{\partial u} & = \frac{{\left( {f_{tu} .M + f_{t} .M_{u} } \right)h_{t} - f_{t} .M.h_{tu} }}{{h_{t}^{2} }} \\ \frac{{\partial V_{x} }}{\partial q} & = \frac{{\left( {f_{tq} .M + f_{t} .M_{q} } \right)h_{t} - f_{t} .M.h_{tq} }}{{h_{t}^{2} }} \\ \frac{{\partial V_{x} }}{\partial t} & = \frac{{\left( {f_{tt} .M + f_{t} .M_{t} } \right)h_{t} - f_{t} .M.h_{tt} }}{{h_{t}^{2} }} \\ \frac{{\partial V_{y} }}{\partial u} & = \frac{{\left( {g_{tu} .M + g_{t} .M_{u} } \right)h_{t} - g_{t} .M.h_{tu} }}{{h_{t}^{2} }} \\ \frac{{\partial V_{y} }}{\partial q} & = \frac{{\left( {g_{tq} .M + g_{t} .M_{q} } \right)h_{t} - g_{t} .M.h_{tq} }}{{h_{t}^{2} }} \\ \frac{{\partial V_{y} }}{\partial t} & = \frac{{\left( {g_{tt} .M + g_{t} .M_{t} } \right)h_{t} - g_{t} .M.h_{tt} }}{{h_{t}^{2} }} \\ \frac{{\partial V_{z} }}{\partial u} & = M_{u} , \quad \frac{{\partial V_{z} }}{\partial q} = M_{q} ,\quad \frac{{\partial V_{z} }}{\partial t} = M_{t} \\ \end{aligned}$$
(51)

Expanding (49):

$$\begin{aligned} \frac{{\partial V_{x} }}{\partial x} = \frac{1}{\left| J \right|}\left( {I_{11} \frac{{\partial V_{x} }}{\partial u} + I_{21} \frac{{\partial V_{x} }}{\partial q} + I_{31} \frac{{\partial V_{x} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{x} }}{\partial y} = \frac{1}{\left| J \right|}\left( {I_{12} \frac{{\partial V_{x} }}{\partial u} + I_{22} \frac{{\partial V_{x} }}{\partial q} + I_{32} \frac{{\partial V_{x} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{x} }}{\partial z} = \frac{1}{\left| J \right|}\left( {I_{13} \frac{{\partial V_{x} }}{\partial u} + I_{23} \frac{{\partial V_{x} }}{\partial q} + I_{33} \frac{{\partial V_{x} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{y} }}{\partial x} = \frac{1}{\left| J \right|}\left( {I_{11} \frac{{\partial V_{y} }}{\partial u} + I_{21} \frac{{\partial V_{y} }}{\partial q} + I_{31} \frac{{\partial V_{y} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{y} }}{\partial y} = \frac{1}{\left| J \right|}\left( {I_{12} \frac{{\partial V_{y} }}{\partial u} + I_{22} \frac{{\partial V_{y} }}{\partial q} + I_{32} \frac{{\partial V_{y} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{y} }}{\partial z} = \frac{1}{\left| J \right|}\left( {I_{13} \frac{{\partial V_{y} }}{\partial u} + I_{23} \frac{{\partial V_{y} }}{\partial q} + I_{33} \frac{{\partial V_{y} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{z} }}{\partial x} = \frac{1}{\left| J \right|}\left( {I_{11} \frac{{\partial V_{z} }}{\partial u} + I_{21} \frac{{\partial V_{z} }}{\partial q} + I_{31} \frac{{\partial V_{z} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{z} }}{\partial y} = \frac{1}{\left| J \right|}\left( {I_{12} \frac{{\partial V_{z} }}{\partial u} + I_{22} \frac{{\partial V_{z} }}{\partial q} + I_{32} \frac{{\partial V_{z} }}{\partial t}} \right) \hfill \\ \frac{{\partial V_{z} }}{\partial z} = \frac{1}{\left| J \right|}\left( {I_{13} \frac{{\partial V_{z} }}{\partial u} + I_{23} \frac{{\partial V_{z} }}{\partial q} + I_{33} \frac{{\partial V_{z} }}{\partial t}} \right) \hfill \\ \end{aligned}$$
(52)

Replacing from (50), (51) and (52) into (42):

$$\begin{aligned} & \frac{1}{\left| J \right|}\left[ {\left( {g_{q} h_{t} - g_{t} h_{q} } \right)\frac{{\left( {f_{tu} \cdot M + f_{t} \cdot M_{u} } \right)h_{t} - f_{t} \cdot M \cdot h_{tu} }}{{h_{t}^{2} }}} \right. \\ & \quad + \left( { - g_{u} h_{t} + g_{t} h_{u} } \right)\frac{{\left( {f_{tq} \cdot M + f_{t} \cdot M_{q} } \right)h_{t} - f_{t} \cdot M \cdot h_{tq} }}{{h_{t}^{2} }} \\ & \quad + \left( {g_{u} h_{q} - g_{q} h_{u} } \right)\frac{{\left( {f_{tt} \cdot M + f_{t} \cdot M_{t} } \right)h_{t} - f_{t} \cdot M \cdot h_{tt} }}{{h_{t}^{2} }} \\ & \quad + \left( { - f_{q} h_{t} + f_{t} h_{q} } \right)\frac{{\left( {g_{tu} \cdot M + g_{t} \cdot M_{u} } \right)h_{t} - g_{t} \cdot M \cdot h_{tu} }}{{h_{t}^{2} }} \\ & \quad + \left( {f_{u} h_{t} - f_{t} h_{u} } \right)\frac{{\left( {g_{tq} \cdot M + g_{t} \cdot M_{q} } \right)h_{t} - g_{t} \cdot M \cdot h_{tq} }}{{h_{t}^{2} }} \\ & \quad + \left( { - f_{u} h_{q} + f_{q} h_{u} } \right)\frac{{\left( {g_{tt} \cdot M + g_{t} \cdot M_{t} } \right)h_{t} - g_{t} \cdot M \cdot h_{tt} }}{{h_{t}^{2} }} \\ & \quad \left. { + \left( {f_{q} g_{t} - f_{t} g_{q} } \right)M_{u} + \left( { - f_{u} g_{t} + f_{t} g_{u} } \right)M_{q} + \left( {f_{u} g_{q} - f_{q} g_{u} } \right)M_{t} } \right] = 0 \\ \end{aligned}$$
(53)

or more simply:

$$A\left( {u,q,t} \right) \cdot M + B\left( {u,q,t} \right) \cdot \frac{\partial M}{\partial t} = 0$$
(54)

where

$$\begin{aligned} A & = h_{t} (g_{q} f_{tu} h_{t} - g_{q} h_{tu} f_{t} - g_{t} h_{q} f_{tu} - g_{u} h_{t} f_{tq} + g_{u} h_{tq} f_{t} + g_{t} h_{u} f_{tq} \\ & \quad + g_{u} h_{q} f_{tt} - g_{q} h_{u} f_{tt} - f_{q} g_{tu} h_{t} + f_{q} h_{tu} g_{t} + f_{t} h_{q} g_{tu} + f_{u} g_{tq} h_{t} \\ & \quad - f_{u} h_{tq} g_{t} - f_{t} h_{u} g_{tq} - f_{u} h_{q} g_{tt} + f_{q} h_{u} g_{tt} ) + g_{t} h_{q} h_{tu} f_{t} \\ & \quad - g_{t} h_{u} h_{tq} f_{t} - g_{u} h_{q} f_{t} h_{tt} + g_{q} h_{u} f_{t} h_{tt} - f_{t} h_{q} g_{t} h_{tu} \\ & \quad + f_{t} h_{u} g_{t} h_{tq} + f_{u} h_{q} g_{t} h_{tt} - f_{q} h_{u} g_{t} h_{tt} \\ \end{aligned}$$
(55)
$$B = h_{t} \left[ {h_{t} \left( {f_{u} g_{q} - f_{q} g_{u} } \right) + h_{q} \left( {f_{t} g_{u} - f_{u} g_{t} } \right) + h_{u} \left( {f_{q} g_{t} - f_{t} g_{q} } \right)} \right]$$
(56)

Rearranging and integrating (54) yields:

$$\int {\frac{\partial M}{M}} = - \int {\frac{A}{B}\partial t}$$
(57)

It is evident from (55) and (56) that:

$$A = \frac{\partial B}{\partial t} - A_{1}$$
(58)

where

$$A_{1} = 2h_{tt} \left[ {h_{t} \left( {f_{u} g_{q} - f_{q} g_{u} } \right) + h_{q} \left( {f_{t} g_{u} - f_{u} g_{t} } \right) + h_{u} \left( {f_{q} g_{t} - f_{t} g_{q} } \right)} \right]$$
(59)

Therefore

$$\frac{A}{B} = \frac{{\frac{\partial B}{\partial t} - A_{1} }}{B}$$
(60)

or

$$\frac{A}{B} = \frac{\partial B/\partial t}{B} - \frac{{2h_{tt} }}{{h_{t} }}$$
(61)

Replacing (61) in (62):

$$\int {\frac{\partial M}{M}} = - \int {\left( {\frac{\partial B/\partial t}{B} - \frac{{2h_{tt} }}{{h_{t} }}} \right)} \cdot \partial t$$
(62)

It follows that

$$Ln\left( M \right) = - Ln\left( B \right) + 2 \times Ln\left( {h_{t} } \right) + Ln\left( C \right)$$
(63)

in which C is the constant of integration and a function of the other two parameters u and q;

$$C = C\left( {u,q} \right)$$
(64)

Rewritten (63):

$$M = \frac{{h_{t}^{2} \cdot C}}{B}$$
(65)

From (56):

$$M = \frac{{C \cdot h_{t}^{2} }}{{h_{t} \left[ {h_{t} \left( {f_{u} g_{q} - f_{q} g_{u} } \right) + h_{q} \left( {f_{t} g_{u} - f_{u} g_{t} } \right) + h_{u} \left( {f_{q} g_{t} - f_{t} g_{q} } \right)} \right]}}$$
(66)

or

$$M = \frac{{C \cdot h_{t} }}{{h_{t} \left( {f_{u} g_{q} - f_{q} g_{u} } \right) + h_{q} \left( {f_{t} g_{u} - f_{u} g_{t} } \right) + h_{u} \left( {f_{q} g_{t} - f_{t} g_{q} } \right)}}$$
(67)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidpour, S.P., Parvizi, A. & Seyyed Nosrati, A. Upper bound analysis of wire flat rolling with experimental and FEM verifications. Meccanica 54, 2247–2261 (2019). https://doi.org/10.1007/s11012-019-01066-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01066-4

Keywords

Navigation