Skip to main content
Log in

A rational analytical model of flat rolling problem

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

In the mechanics of metal forming processes (particularly in strip rolling), it is important to determine the load on the machine tool that deforms the material into a new shape, as well as to compute the velocity field, strain rates and stresses in the deformation zone. Since no exact solutions are available for such problems, the perturbation method with respect to the Bingham number (which emerges from the analysis of the governing equations) is proposed for solving the rolling problem in viscoplastic deformation. We determine the neutral point position, as well as the equations for the discontinuity surfaces limiting the deformation zone. It is of interest to note that the most widely accepted theory of rolling predicts the so-called friction hill type of normal stress distribution in the roll gap. The analysis shows that this model could predict wave-like distribution of the roll pressure. The model also predicts the key parameters such as load and torque as functions of the rolling parameters. The theoretical results are numerically exemplified, and the influence of various technological factors on the rolling process is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lenard, J.G.: Primer on Flat Rolling, 2nd edn. Elsevier, Oxford (2014)

    Google Scholar 

  2. Lenard, J.G.: Metal Forming Science and Practice: A State-of-the-Art Volume in Honour of Profesor J.A. Schey’s 80th Birthday. Elsevier, Amsterdam (2002)

    Google Scholar 

  3. Montmitonnet, P., Fourment, L., Ripert, U., Ngo, Q.T., Ehrlacher, A.: State of the art in rolling process modelling. Springer Verl. Wien 161(9), 396–404 (2016)

    Google Scholar 

  4. Montmitonnet, P., Buessler, P.: A review on theoretical analyses of rolling in Europe. ISIJ Int. 31, 525–538 (1991)

    Article  Google Scholar 

  5. Hartley, P., Sturgess, C.E.N., Liu, C., Rowe, G.W.: Experimental and theoretical studies of workpiece deformation, stress, and strain during flat rolling. Int. Mater. Rev. 34(1), 19–34 (1989)

    Article  Google Scholar 

  6. Siebel, E., Lueg, W.: Investigations into the distribution of pressure at the surface of the material in contact with the rolls. Mitt. K. W. Inst. Eisenf. 15, 1–14 (1933)

    Google Scholar 

  7. Al-Salehi, F.A.R., Firbank, T.C., Lancaster, P.R.: An experimental determination of the roll pressure distribution in cold rolling. Int. J. Mech. Sci. 15, 693–710 (1973)

    Article  Google Scholar 

  8. Malinowski, Z., Pietrzyk, M., Lenard, J.G.: Analysis of the flat rolling process: one-dimensional and finite element models. J. Mater. Process. Technol. 39, 373–387 (1993)

    Article  Google Scholar 

  9. Lu, C., Kiet Tieu, A., B. Ma, Jiang, Z.: Friction measurement in hot rolling of steel. In: Proceedings of the 44th MWSP Conference, Orlando, FL, pp. 603–612 (2002)

  10. Tieu, A.K., Liu, Y.J.: Friction variation in the cold rolling process. Tribol. Int. 37, 177–183 (2004)

    Article  Google Scholar 

  11. Siebel, E.: Kräfte und Materialfluß bei der bildsamen Formänderung. Stahl und Eisen 45, 1563–1566 (1925)

    Google Scholar 

  12. von Karman, T.: On the theory of rolling. Z. Math. Mech. 5, 139–141 (1925)

    Google Scholar 

  13. Orowan, E.: The calculation of roll pressure in hot and cold flat rolling. Proc. Inst. Mech. Eng. 150, 140–167 (1943)

    Article  Google Scholar 

  14. Alexander, J.M.: On the theory of rolling. Proc. R. Soc. (Lond.) Ser. A326, 535–563 (1972)

    Article  MATH  Google Scholar 

  15. Bland, D.R., Ford, H.: The calculation of roll force and torque in cold strip rolling with tensions. Proc. Inst. Mech. Eng. 139, 133–144 (1948)

    Google Scholar 

  16. Sims, R.B.: The calculation of roll force and torque in hot rolling mills. Proc. Inst. Mech. Eng. 168, 191–200 (1954)

    Article  Google Scholar 

  17. Schey, J.A.: Introduction to Manufacturing Processes, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  18. Avitzur, B.: Metal Forming: Processes and Analyses. McGraw-Hill, New York (1968)

    Google Scholar 

  19. Avitzur, B.: An upper-bound approach to cold strip rolling. J. Eng. Ind. 86(1), 31–45 (1964)

    Article  Google Scholar 

  20. Tirosh, J., Kobayashi, S.: Kinetic and dynamic effects on the upper bound loads in metal forming processes. J. Appl. Mech. 43, 314–318 (1976)

    Article  MATH  Google Scholar 

  21. Tirosh, J., Iddan, D., Pawelski, O.: The mechanics of high-speed rolling of viscoplastic materials. J. Appl. Mech. 52, 309–318 (1985)

    Article  Google Scholar 

  22. Camenschi, G., Cristescu, N., Sandru, N.: High speed wire drawing. Arch. Mech. 31(5), 741–755 (1979)

    MATH  Google Scholar 

  23. Wang, G., Knothe, K.: The influence of inertia forces on steady-state rolling contact. Acta Mech. 79, 221–232 (1989)

    Article  MATH  Google Scholar 

  24. Trull, M., McDonald, D., Richardson, A., Farrugia, D.C.J.: Advanced finite element modelling of plate rolling operations. J. Mater. Process. Technol. 177, 513–516 (2006)

    Article  Google Scholar 

  25. Muniz, A.R.: Non-linear finite element method simulation and modeling of the cold and hot rolling processes. M.Sc. Thesis, Virginia Polytechnic and State University, Blacksburg, VA (2007)

  26. Jiang, Z.Y., Tieu, A.K., Zhang, X.M., Lua, C., Sun, W.H.: Finite element simulation of cold rolling of thin strip. J. Mater. Process. Technol. 140, 542–547 (2003)

    Article  Google Scholar 

  27. Xiang-hua, L., Xu, S., Shan-qing, L., Jian-yong, X., Guo-dong, W.: FEM analysis of rolling pressure along strip width in cold rolling process. J. Iron Steel Res. Int. 14, 22–26 (2007)

    Google Scholar 

  28. Kainz, J.A., Widder, M.E., Zeman, K.: Enhanced strip-roll coupling concepts for the numerical simulation of flat hot rolling. Acta Mech. 224, 957–983 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Smet, R.P., Johnson, R.E.: An asymptotic analysis of cold sheet rolling. J. Appl. Mech. 56, 33–39 (1989)

    Article  Google Scholar 

  30. Domanti, S., McElwain, D.L.S., Middleton, R.H.: Asymptotic approach to the Hill model of spread in rolling. J. Eng. Mater. Technol. 117(1), 75–81 (1995)

    Article  Google Scholar 

  31. Camenschi, G., Cristescu, N., Sandru, N.: Developments in high speed visco-plastic flow through conical converging dies. J. Appl. Mech. 50, 566–570 (1983)

    Article  MATH  Google Scholar 

  32. Sandru, N., Camenschi, G.: Viscoplastic flow through inclined planes with application to the strip drawing. Lett. Appl. Eng. Sci. 17, 773–784 (1979)

    MATH  Google Scholar 

  33. Sandru, N., Camenschi, G.: Dynamical aspects in wire drawing problem. Lett. Appl. Eng. 18, 999–1007 (1980)

    MATH  Google Scholar 

  34. Sandru, N., Camenschi, G.: Mathematical model of the tube drawing with floating plug. Int. J. Eng. Sci. 26(6), 567–585 (1988)

    Article  MATH  Google Scholar 

  35. Camenschi, G., Sandru, N.: Mathematical Models in Metal Working. Ed. Tech., Bucharest (2003) (in Romanian)

  36. Ioan, R.: Mathematical Modelling of Viscoplastic Deformation in Some Technological Processes. Romanian Academy Publishing House, Bucharest (2008). (in Romanian)

    Google Scholar 

  37. Stolarski, T.A., Tobe, S.: Rolling in Metal Forming, in Rolling Contacts. Wiley, Chichester (2014). https://doi.org/10.1002/9781118903001.ch10

    Google Scholar 

  38. Masterov, V., Berkovsky, V.: Basic theory of rolling. In: Masterov, V., Berkovsky, V. (eds.) Theory of Plastic Deformation and Metal Working, pp. 173–211. Mir Publishers, Moscow (1975)

    Google Scholar 

  39. Avitzur, B.: Maximum reduction in cold strip rolling. Proc. Inst. Mech. Eng. 174, 865–884 (1960)

    Article  Google Scholar 

  40. Wilson, W.R.D., Walowit, J.A.: An isothermal hydrodynamic lubrication theory for strip rolling with front and back tension. In: Proceedings 1971 Tribology Convention, Institute of Mechanical Engineering, London, pp. 164–172 (1972)

  41. Le, H.R., Sutcliffe, M.P.F.: A robust model for rolling of thin strip and foil. Int. J. Mech. Sci. 43, 1405–1419 (2001)

    Article  MATH  Google Scholar 

  42. Schey, J.A.J.: Tribology in metalworking: friction, lubrication, and wear. Appl. Metalwork. 3, 173 (1984). https://doi.org/10.1007/BF02833697

    Article  Google Scholar 

  43. Lenard, J.G., Barbulovic-Nad, L.: The coefficient of friction during hot rolling of low carbon steel strips. ASME J. Tribol. 124, 840–845 (2002)

    Article  Google Scholar 

  44. Lenard, J.G.: The effect of roll roughness on the rolling parameters during cold rolling of an aluminum alloy. J. Mater. Process. Technol. 132, 133–144 (2002)

    Google Scholar 

  45. Roychoudhury, R., Lenard, J.G.: A mathematical model for cold rolling-experimental substantiation. In: Proceedings of the 1st International Conference Technology Plasticity, Tokyo, pp. 1138–1145 (1984)

  46. Roberts, W.L.: Hot Rolling of Steel. Marcel Dekker Inc., New York (1983)

    Google Scholar 

  47. Lenard, J.G., Malinowski, Z.: Measurements of friction during warm rolling of aluminium. J. Mater. Process. Technol. 39, 357–371 (1993)

    Article  Google Scholar 

  48. Lenard, J.G., Kalpakjian, S.: An experimental study of boundary conditions in hot and cold flat rolling. Ann. CIRP 39(1), 279–282 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cosmin Dănuţ Barbu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbu, C.D., Şandru, N. A rational analytical model of flat rolling problem. Acta Mech 229, 3069–3088 (2018). https://doi.org/10.1007/s00707-018-2144-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-018-2144-0

Navigation