Skip to main content
Log in

Parameters identification of cable stayed footbridges using Bayesian inference

  • Stochastics and Probability in Engineering Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Numerical modeling of actual structural systems is a very complex task mainly due to the lack of complete knowledge on the involved parameters. Simplified assumptions on the uncertain geometry, material properties and boundary conditions make the numerical model response differ from the actual structural response. Improvements of the finite element (FE) models to obtain accurate response predictions can be achieved by vibration based FE model updating which uses experimental measures to minimize the differences between the numerical and experimental modal features (i.e. natural frequencies and mode shapes). Within this context, probabilistic model updating procedures based on the Bayes’ theorem were recently proposed in the literature in order to take into account the uncertainties affecting the structural parameters and their influence on the structural response. In this paper, a novel framework to efficiently estimate the posterior marginal PDF of the selected model parameters is proposed. First, the main dynamic parameters to be used for model updating are identified by ambient vibration tests on an actual structural system. Second, a first numerical FE model is developed to perform initial sensitivity analysis. Third, a surrogate model based on polynomial chaos is calibrated on the initial FE model to significantly reduce computational costs. Finally, the posterior marginal PDFs of the chosen model parameters are estimated. The effectiveness of the proposed method is demonstrated using a FE numerical model describing a curved cable-stayed footbridge located in Terni (Umbria Region, Central Italy).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Allemang AJ (2003) The modal assurance criterion (MAC): twenty years of use and abuse. J Sound Vib 37:14–21

    Google Scholar 

  2. Au SK, Zhang FL, Ni YC (2013) Bayesian operational modal analysis: theory, computation, practice. Comput Struct 126:3–14. https://doi.org/10.1016/j.compstruc.2012.12.015

    Article  Google Scholar 

  3. Bartoli G, Betti M, Facchini L, Marra A, Monchetti S (2017) Bayesian model updating of historic masonry towers through dynamic experimental data. Procedia Eng 199:1258–1263. https://doi.org/10.1016/j.proeng.2017.09.267

    Article  Google Scholar 

  4. Bayes T (1763) An essay towards solving a problem in the doctrine of chances. Philos Trans R Soc 53:370–418

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck JL (2010) Bayesian system identification based on probability logic. Struct Control Health Monit 17(7):825–847. https://doi.org/10.1002/stc.424

    Article  Google Scholar 

  6. Beck JL, Katafygiotis LS (1998) Updating models and their uncertainties. I: Bayesian statistical framework. J Eng Mech 124(4):455–461 10.1061/(ASCE)0733-9399(1998)124:4(455)

    Article  Google Scholar 

  7. Benedettini F, Gentile C (2011) Operational modal testing and fe model tuning of a cable-stayed bridge. Eng Struct 33(6):2063–2073. https://doi.org/10.1016/j.engstruct.2011.02.046

    Article  Google Scholar 

  8. Bernardini E, Spence S, Gioffré M (2012) Dynamic response estimation of tall buildings with 3D modes: a probabilistic approach to the high frequency force balance method. J Wind Eng Ind Aerodyn 104–106:56–64. https://doi.org/10.1016/j.jweia.2012.03.014

    Article  Google Scholar 

  9. Blatman G, Sudret B (2010) An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probab Eng Mech 25:183–197. https://doi.org/10.1016/j.probengmech.2009.10.003

    Article  Google Scholar 

  10. Brincker R, Ventura C, Andersen P (2001) Damping estimation by frequency domain decomposition

  11. Brincker R, Ventura CE (2015) Introduction to operational modal analysis. Wiley, Hoboken

    Book  MATH  Google Scholar 

  12. Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of the international modal analysis conference—IMAC 1

  13. Brownjohn JMW, Xia PQ (2000) Dynamic assessment of curved cable-stayed bridge by model updating. J Struct Eng 126(2):252–260. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(252)

    Article  Google Scholar 

  14. Choi SK, Canfield R, Grandhi R, Pettit C (2004) Polynomial chaos expansion with latin hypercube sampling for estimating response variability. AIAA J 42:1191–1198. https://doi.org/10.2514/1.2220

    Article  ADS  Google Scholar 

  15. Daniell WE, Macdonald J (2007) Improved finite element modelling of a cable-stayed bridge through systematic manual tuning. Eng Struct 29(3):358–371. https://doi.org/10.1016/j.engstruct.2006.05.003

    Article  Google Scholar 

  16. Ewins D (1984) Modal testing: theory and practice. Mechanical engineering research studies: engineering dynamics series. Research Studies Press, Letchworth

    Google Scholar 

  17. Field R, Grigoriu M (2004) On the accuracy of the polynomial chaos approximation. Probab Eng Mech 19(1):65–80. https://doi.org/10.1016/j.probengmech.2003.11.017

    Article  Google Scholar 

  18. Fleming J, Engin AE (1980) Dynamic behaviour of a cable-stayed bridge. Earthq Eng Struct Dyn 8(1):1–16. https://doi.org/10.1002/eqe.4290080102

    Article  Google Scholar 

  19. Gamerman D, Lopes H (2015) Markov Chain Monte Carlo: stochastic simulation for Bayesian inference. Chapmann & Hall, CRC, Boca Raton

    MATH  Google Scholar 

  20. Ghaffar AMA, Khalifa MA (1991) Importance of cable vibration in dynamics of cable stayed bridges. J Eng Mech 117(11):2571–2589. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:11(2571)

    Article  Google Scholar 

  21. Ghanem R, Spanos P (1991) Stochastic finite elements: a spectral approach. Am J Math 60:897–936

    MATH  Google Scholar 

  22. Gioffré M, Gusella V (2007) Peak response of a nonlinear beam. J Eng Mech 133(9):963–969. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:9(963)

    Article  Google Scholar 

  23. Gioffré M, Gusella V, Cluni F (2008) Performance evaluation of monumental bridges: testing and monitoring ’Ponte delle Torri’ in Spoleto. Struct Infrastruct Eng 4(2):95–106. https://doi.org/10.1080/15732470601155300

    Article  Google Scholar 

  24. Hastings W (1970) Monte Carlo sampling methods using Markov chains and their applications. Biometrika trust, vol 57. Oxford University Press, Oxford

    MATH  Google Scholar 

  25. Jaynes ET (1957) Information theory and statistical mechanics. Phys Rev 106:620–630. https://doi.org/10.1103/PhysRev.106.620

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Konakli K, Sudret B (2016) Polynomial meta-models with canonical low-rank approximations: numerical insights and comparison to sparse polynomial chaos expansions. J Comput Phys 321:1144–1169. https://doi.org/10.1016/j.jcp.2016.06.005

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Marwala T (2010) Finite-element-model updating using computional intelligence techniques. Springer, London

    Book  MATH  Google Scholar 

  28. Matthies HG (2007) Uncertainty quantification with stochastic finite elements. Encycl Comput Mech. https://doi.org/10.1002/0470091355.ecm071

    Google Scholar 

  29. McKelvey TP, Van Overschee P, De Moor B (1998) Book review: subspace identification for linear systems: theory, implementation, applications. Int J Adapt Control Signal Process 12(6):540–541. https://doi.org/10.1002/(SICI)1099-1115(199809)12:6<540::AID-ACS505>3.0.CO;2-L

    Article  Google Scholar 

  30. Neal RM (2011) MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo

  31. Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13:855–878

    Article  ADS  Google Scholar 

  32. Pepi C, Gioffré M, Comanducci G, Cavalagli N, Bonaca A, Ubertini F (2017) Dynamic characterization of a severely damaged historic masonry bridge. Procedia Eng 199:3398–3403. https://doi.org/10.1016/j.proeng.2017.09.579

    Article  Google Scholar 

  33. Rossi G, Marsili R, Gusella V, Gioffrè M (2002) Comparison between accelerometer and laser vibrometer to measure traffic excited vibrations on bridges. Shock Vib 9(1–2):11–18. https://doi.org/10.1155/2002/968509

    Article  Google Scholar 

  34. Sap2000 (2018) Static and dynamic finite element of structures. Computers and Structures Inc, Berkeley

    Google Scholar 

  35. Saltelli A, Chan K (2000) Sensitivity analysis. Wiley, New York

    MATH  Google Scholar 

  36. Simoen E, De Roeck G, Lombaert G (2011) Resolution and uncertainty analysis of Bayesian FE model updating results. In: Proceedings of the 8th international conference on structural dynamics, EURODYN 2011, pp 2318–2325

  37. Simoen E, Roeck GD, Lombaert G (2015) Dealing with uncertainty in model updating for damage assessment: a review. Mech Syst Signal Process 56–57:123–149. https://doi.org/10.1016/j.ymssp.2014.11.001

    Article  Google Scholar 

  38. Sobol I (1993) Sensitivity estimates for non linear mathematical model. Math Comput Simul 1:56–61

    Google Scholar 

  39. Sobol I (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math Comput Simul 55(1):271–280. https://doi.org/10.1016/S0378-4754(00)00270-6

    Article  MathSciNet  MATH  Google Scholar 

  40. Sudret B (2008) Global sensitivity analysis using polynomial chaos expansions. Reliab Eng Syst Saf 93(7):964–979. https://doi.org/10.1016/j.ress.2007.04.002

    Article  Google Scholar 

  41. Sudret B, Marelli S, Wiart J (2017) Surrogate models for uncertainty quantification: an overview. In: 2017 11th European conference on antennas and propagation (EUCAP), pp 793–797

  42. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. Soc Ind Appl Math. https://doi.org/10.1137/1.9780898717921

    MATH  Google Scholar 

  43. Ren WX, Peng XL, Lin YQ (2005) Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge. Eng Struct 27(4):535–548. https://doi.org/10.1016/j.engstruct.2004.11.013

    Article  Google Scholar 

  44. Wiener N (1938) The homogeneous chaos. Am J Math 60:897–936

    Article  MathSciNet  MATH  Google Scholar 

  45. Xiu D, Karniadakis GE (2002) The Wiener–Askey polynomial chaos for stochastic differential equations. SIAM J Sci Comput 24(2):619–644

    Article  MathSciNet  MATH  Google Scholar 

  46. Yuen KV, Beck JL, Katafygiotis SL (2001) Efficient model updating and health monitoring methodology using incomplete modal data without mode matching. Struct Control Health Monit 13(1):91–107. https://doi.org/10.1002/stc.144

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiara Pepi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pepi, C., Gioffre’, M. & Grigoriu, M.D. Parameters identification of cable stayed footbridges using Bayesian inference. Meccanica 54, 1403–1419 (2019). https://doi.org/10.1007/s11012-019-01019-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-019-01019-x

Keywords

Navigation