Skip to main content
Log in

Flutter analysis of a viscoelastic tapered wing under bending–torsion loading

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

The dynamic stability of a tapered viscoelastic wing subjected to unsteady aerodynamic forces is investigated. The wing is considered as a cantilever tapered Euler–Bernoulli beam. The beam is made of a linear viscoelastic material where Kelvin–Voigt model is assumed to represent the viscoelastic behavior of the material. The governing equations of motion are derived through the extended Hamilton’s principle. The resulting partial differential equations are solved via Galerkin’s method along with the classical flutter investigation approach. The developed model is validated against the well-known Goland wing and HALE wing and good agreement is obtained. Different solution methods, namely; the k method, the p-k method, and the flutter determinant method are compared for the case of elastic wing. However, when the viscoelastic damping is introduced, the k and p-k methods become less effective. The flutter determinant method is modified and employed to carry out non-dimensional parametric study on the Goland wing. The study includes the effects of parameters such as the taper ratio, the density ratio, the viscoelastic damping of wing structure and many other parameters on the flutter speed and flutter frequency. The study reveals that a tapered wing would be more dynamically stable than a uniform wing. It is also observed that the viscoelastic damping provides wider stability region for the wing. The investigation shows that the density ratio, bending-to-torsion frequency ratio, and the radius of gyration have significant effects on the dynamic stability of the wing. Based on the obtained results, a wing with an elastic center and inertial center that are located closer to the mid-chord would be more dynamically stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Abdelkefi A, Nayfeh AH, Hajj MR (2012) Design of piezoaeroelastic energy harvesters. Nonlinear Dyn 68:519–530

    Article  Google Scholar 

  2. Abdelkefi A, Vasconcellos R, Nayfeh AH, Hajj MR (2013) An analytical and experimental investigation into limit-cycle oscillations of an aeroelastic system. Nonlinear Dyn 71(159):173

    MathSciNet  MATH  Google Scholar 

  3. Abdelkefi A, Vasconcellos R, Marques FD, Hajj MR (2012) Modeling and identification of freeplay nonlinearity. J Sound Vib 331:1898–1907

    Article  ADS  Google Scholar 

  4. Acum WEA (1959) The comparison of theory and experiment of oscillating wings, vol. II, chpater 10, AGARD manual on aeroelasticity

  5. Baker WE, Woolam WE, Young D (1967) Air and internal damping of thin cantilever beams. Int J Mech Sci 9:743–766

    Article  Google Scholar 

  6. Beheshtinia F, Firouz-Abadi RD, Rahmanian M (2017) Viscous damping effect on the aeroelastic stability of subsonic wings. J Fluids Struct 73:1–15

    Article  Google Scholar 

  7. Dowell EH (1967) Nonlinear oscillations of a fluttering plate II. AIAA J 5:1856–1862

    Article  ADS  Google Scholar 

  8. Dowell EH, Voss HM (1965) Theoretical and experimental panel flutter studies in the Mach number range 1.0 to 5.0. AIAA J 3:2292–2304

    Article  ADS  Google Scholar 

  9. Durmaz S, Ozgumus OO, Kaya MO (2007) Aeroelastic analysis of a tapered aircraft wing. In: AIAC-4th, Proceedings of the 4th Ankara International Aerospace Conference, Ankara

  10. Fung YC (1995) An introduction to the theory of aeroelasticity, 2nd edn. Dover Publications, New York

    Google Scholar 

  11. Ghommem M, Hajj MR, Nayfeh AH (2010) Uncertainty analysis near bifurcation of an aeroelastic system. J Sound Vib 329:3335–3347

    Article  ADS  Google Scholar 

  12. Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech Trans Asme 12:A197–A208

    Google Scholar 

  13. Goland M, Luke YL (1948) The flutter of a uniform wing with tip weights. J Appl Mech 15:13–20

    MATH  Google Scholar 

  14. Haddadpour H, Firouz-Abadi RD (2006) Evaluation of quasi-steady aerodynamic modeling for flutter prediction of aircraft wings in incompressible flow. Thin-walled Struct 44:931–936

    Article  Google Scholar 

  15. Hilton HH (1957) Pitching instability of rigid lifting surfaces on viscoelastic supports in subsonic or supersonic potential flow. In: Proceedings of the Third Midwestern Conference on Solid Mechanics, University of Michigan

  16. Hilton HH (1960) The divergence of supersonic, linear viscoelastic lifting surfaces, including chordwise bending. J Aero/Space Sci 27:926–934

    Article  MATH  Google Scholar 

  17. Hilton HH (1991) Viscoelastic and structural damping analysis. In: Proceedings on Damping’91, Air Force Technical Report WL TR-91, vol 3078, Wright Patterson AFB, pp 1–15

  18. Hilton HH, VAIL C (1993) Bending–torsion flutter of linear viscoelastic wings including structural damping. In: Proceedings of the 34th Structures, Structural Dynamics and Materials Conference, La Jolla

  19. Hodges DH, Pierce GA (2011) Introduction to structural dynamics and aeroelasticity, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  20. Jia-ju S, Ke-hwa J (1981) Dynamic response of viscoelastic beam. Appl Math Mech 2:255–264

    Article  MathSciNet  Google Scholar 

  21. Lahellec N, Suquet P (2007) Effective behavior of linear viscoelastic composites: a time-integration approach. Int J Solids Struct 44:507–529

    Article  MathSciNet  MATH  Google Scholar 

  22. Mahran M, Negm H, El-Sabbagh A (2015) Aero-elastic characteristics of tapered plate wings. Finite Elem Anal Des 94:24–32

    Article  Google Scholar 

  23. Martins PC, Rade DA, Marques FD (2013) Dynamic stability analysis of aeroviscoelastic systems. In: Proceedings of the 22nd international congress of mechanical engineering (COBEM 2013), Ribeirão Preto

  24. Meirovitch L (1975) Elements of vibration analysis. McGraw-Hill, New York

    MATH  Google Scholar 

  25. Moosavi MR, Oskouei AN, Khelil A (2005) Flutter of subsonic wing. Thin-walled Struct 43:617–627

    Article  Google Scholar 

  26. Nayfeh AH, Ghommem M, Hajj MR (2012) Normal form representation of the aeroelastic response of the Goland wing. Nonlinear Dyn 67:1847–1861

    Article  MathSciNet  MATH  Google Scholar 

  27. Nayfeh AH, Hammad BK, Hajj MR (2012) Discretization effects on flutter aspects and control of wing/store configurations. J Vib Control 18:1043–1055

    Article  MathSciNet  MATH  Google Scholar 

  28. Patil MJ, Yurkovich RN, Hodges DH (2004) Incorrectness of the k method for flutter calculations. J Aircr 41:402–405

    Article  Google Scholar 

  29. Patil MJ, Hodges DH, Cesnik CES (2001) Nonlinear aeroelasticity and flight dynamics of high altitude long-endurance aircraft. J Aircr 19:88–94

    Article  Google Scholar 

  30. Theodorsen T (1935). General theory of aerodynamic instability and the mechanism of flutter. NACA report 496

  31. Ungar E (1971) Chapter 14 in Noise and vibration control. In: Beranek LL (ed). McGraw Hill, New York

  32. Vasconcellos R, Abdelkefi A, Marques FD, Hajj MR (2012) Representation and analysis of control surface freeplay nonlinearity. J Fluids Struct 31:79–91

    Article  Google Scholar 

  33. Vasconcellos R, Abdelkefi A (2015) Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom. Commun Nonlinear Sci Numer Simul 20:324–334

    Article  ADS  Google Scholar 

  34. Yi S, Ahmad MF, Hilton HH (1996) Dynamic responses of plates with viscoelastic free layer damping treatment. J Vib Acoust 118:362–367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq T. Darabseh.

Appendix A

Appendix A

Coefficients of the equations of motion.

$$a_{11} = \mathop \smallint \limits_{0}^{1} \left( {\left[ {1 - c_{t} \xi } \right]f^{\prime\prime}} \right)^{''} f\,d\xi$$
$$a_{12} = \frac{{\eta_{E} }}{\sigma }\mathop \smallint \limits_{0}^{1} \left( {\left[ {1 - c_{t} \xi } \right]f^{\prime\prime}} \right)^{''} f\,d\xi$$
$$a_{13} = \frac{1}{{\sigma^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]f^{2} \,d\xi$$
$$a_{14} = \frac{1}{{2\mu \sigma^{2} }}\frac{{dC_{L} }}{d\theta }\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]f^{2} \,d\xi$$
$$a_{15} = \frac{\pi }{{4\mu \sigma^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{2} f^{2} \,d\xi$$
$$a_{21} = \frac{{y_{a} }}{{r_{a}^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{2} f\phi\,d\xi$$
$$a_{22} = \frac{1}{{2\mu r_{a}^{2} }}\frac{{dC_{L} }}{d\theta }\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{2} \left( {y_{0} - \frac{1}{4}} \right)f\,\phi d\xi$$
$$a_{23} = \frac{\pi }{{4\mu r_{a}^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{3} \left( {y_{0} - \frac{1}{2}} \right)\phi f\,d\xi$$
$$b_{11} = \frac{{y_{a} }}{{\sigma^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{2} f\phi\,d\xi$$
$$b_{12} = \frac{1}{{2\mu \sigma^{2} }}\frac{{dC_{L} }}{d\theta }\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]f\phi\,d\xi$$
$$b_{13} = \frac{1}{{2\mu \sigma^{2} }}\frac{{dC_{L} }}{d\theta }\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{2} \left( {\frac{3}{4} - y_{0} } \right)f\phi\,d\xi$$
$$b_{14} = \frac{\pi }{{4\mu \sigma^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{2} \phi f\,d\xi$$
$$b_{15} = \frac{\pi }{{4\mu \sigma^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{3} \left( {y_{0} - \frac{1}{2}} \right)\phi f\,d\xi$$
$$b_{21} = \mathop \smallint \limits_{0}^{1} \left( {\left[ {1 - c_{t} \xi } \right]\phi^{\prime}} \right)^{'} \phi\,d\xi$$
$$b_{22} = \eta_{G} \mathop \smallint \limits_{0}^{1} \left( {\left[ {1 - c_{t} \xi } \right]\phi^{'} } \right)^{'} \phi\,d\xi$$
$$b_{23} = \mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]\phi^{2}\, d\xi$$
$$b_{24} = \frac{1}{{2\mu r_{a}^{2} }}\frac{{dC_{L} }}{d\theta }\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{2} \left( {y_{0} - \frac{1}{4}} \right)\phi^{2}\, d\xi$$
$$b_{25} = \frac{1}{{2\mu r_{a}^{2} }}\frac{{dC_{L} }}{d\theta }\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{3} \left( {y_{0} - \frac{1}{4}} \right)\left( {\frac{3}{4} - y_{0} } \right)\phi^{2}\,d\xi$$
$$b_{26} = \frac{\pi }{{4\mu r_{a}^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{3} \left( {\frac{3}{4} - y_{0} } \right)\phi^{2}\,d\xi$$
$$b_{27} = \frac{\pi }{{4\mu r_{a}^{2} }}\mathop \smallint \limits_{0}^{1} \left[ {1 - c_{t} \xi } \right]^{4} \left( {\frac{9}{32} + y_{0}^{2} - y_{0} } \right)\phi^{2}\,d\xi$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matter, Y.S., Darabseh, T.T. & Mourad, AH.I. Flutter analysis of a viscoelastic tapered wing under bending–torsion loading. Meccanica 53, 3673–3691 (2018). https://doi.org/10.1007/s11012-018-0915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-018-0915-2

Keywords

Navigation