Skip to main content
Log in

Nonlinear aeroelastic analysis of high-aspect-ratio wings using indicial aerodynamics

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

A new approach for calculating the unsteady aerodynamic loads based upon the indicial functions concept in combination with a fully third-order nonlinear structural model has been developed to analyze the aeroelastic behavior of high-aspect-ratio wings over the entire range of subsonic flow. The resulting aeroelastic equations including all structural geometric nonlinearities associated with large deformations and mass distributions, along with nonlinear terms due to mass imbalance at wing’s cross section, are then rewritten in the state-space form, introducing an efficient and appropriate approach to use in both eigenvalue and time response analysis. To validate the developed aeroelastic equations, the linear and nonlinear aeroelastic behaviors of a specified wing are compared with those presented for an incompressible aerodynamic case. Quantitative and qualitative agreement between the present results and available ones confirms the unsteady indicial aerodynamics, nonlinear structural modeling, and, consequently, the developed nonlinear aeroelastic model. By changing the wing model and applying the unsteady compressible aerodynamic loads, the nonlinear aeroelastic behavior of Goland wing is then investigated, including the flutter boundary, limit cycle oscillations, pre-flutter, flutter, and post-flutter time responses, phase plane diagrams, and also the effect of flight conditions such as altitude and air speed on the aeroelastic behavior. The results represent the necessity of applying appropriate Mach-dependent aerodynamic loads to provide reasonable description of the aeroelastic analysis in the compressible flight speed regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Xiang J, Yan Y, Li D (2014) Recent advance in nonlinear aeroelastic analysis and control of the aircraft. Chin J Aeronaut 27(1):12–22. https://doi.org/10.1016/j.cja.2013.12.009

    Article  Google Scholar 

  2. Patil MJ, Hodges DH, Cesnik CE (2001) Limit-cycle oscillations in high-aspect-ratio wings. J Fluids Struct 15(1):107–132. https://doi.org/10.1006/jfls.2000.0329

    Article  Google Scholar 

  3. Strganac T, Cizmas P, Nichkawde C, Gargoloff J, Beran P (2005) Aeroelastic analysis for future air vehicle concepts using a fully nonlinear methodology. In: 46th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference, 2005. p 2171. https://doi.org/10.2514/6.2005-2171

  4. Katz J, Plotkin A (2001) Low-speed aerodynamics, vol 13. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Kier TM (2005) Comparison of unsteady aerodynamic modelling methodologies with respect to flight loads analysis. AIAA Paper 6027:2005. https://doi.org/10.2514/6.2005-6027

    Article  Google Scholar 

  6. Murua J, Palacios R, Graham JMR (2012) Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics. Prog Aerosp Sci 55:46–72

    Article  Google Scholar 

  7. Leishman J (1988) Validation of approximate indicial aerodynamic functions for two-dimensional subsonic flow. J Aircr 25(10):914–922. https://doi.org/10.2514/3.45680

    Article  Google Scholar 

  8. Marzocca P, Librescu L, Chiocchia G (2000) Unsteady aerodynamics in various flight speed regimes for flutter/dynamic response analyses. In: Proceedings of the 18th AIAA applied aerodynamic conference, Denver, CO, August, 2000. pp 14–17. https://doi.org/10.2514/6.2000-4229

  9. Albano E, Rodden WP (1969) A doublet-lattice method for calculating lift distributions on oscillating surfaces in subsonic flows. AIAA J 7(2):279–285

    Article  Google Scholar 

  10. Rodden WP, Taylor PF, McIntosh SC (1998) Further refinement of the subsonic doublet-lattice method. J Aircr 35(5):720–727. https://doi.org/10.2514/2.2382

    Article  Google Scholar 

  11. Wagner H (1925) Über die Entstehung des dynamischen Auftriebes von Tragflügeln. ZAMM J Appl Math Mech/Zeitschrift für Angewandte Mathematik und Mechanik 5(1):17–35. https://doi.org/10.1002/zamm.19250050103

    Article  MATH  Google Scholar 

  12. Theodorsen T, Mutchler W (1935) General theory of aerodynamic instability and the mechanism of flutter. NACA Rept. 496,

  13. Greenberg JM (1947) Airfoil in sinusoidal motion in a pulsating stream. NACA TN 1326,

  14. Mazelsky B (1951) Numerical determination of indicial lift of a two-dimensional sinking airfoil at subsonic Mach numbers from oscillatory lift coefficients with calculations for Mach number 0.7. NACA TN 2562,

  15. Mazelsky B (1952) Determination of Indicial Lift and Moment of a Two-Dimensional Pitching Airfoil at Subsonic Mach Numbers From Oscillatory Coefficients With Numerical Calculations for a Mach Number of 0.7. NACA TN 2613,

  16. Mazelsky B, Drischler JA (1952) Numerical determination of indicial lift and moment functions for a two-dimensional sinking and pitching airfoil at Mach numbers 0.5 and 0.6. NACA TN 2739,

  17. Lomax H (1961) Indicial aerodynamics. vol Pt. II, Chapter 6. AGARD Manual of Aeroelasticity

  18. Marzocca P, Librescu L, Chiocchia G (2002) Aeroelastic response of a 2-D airfoil in a compressible flow field and exposed to blast loading. Aerosp Sci Technol 6(4):259–272. https://doi.org/10.1016/S1270-9638(02)01169-0

    Article  MATH  Google Scholar 

  19. Marzocca P, Librescu L, Kim D, Lee I, Schober S (2007) Development of an indicial function approach for the two-dimensional incompressible/compressible aerodynamic load modelling. Proc Inst Mech Eng Part G J Aerosp Eng 221(3):453–463. https://doi.org/10.1243/09544100JAERO88

    Article  Google Scholar 

  20. Farsadi T, Javanshir J Expansion of Indicial Function Approximations for 2-D Subsonic Compressible Aerodynamic Loads. In: Proceedings of the ASME 2012 international mechanical engineering congress and exposition, Houstoun, Texas, November 9–15 2012. American Society of Mechanical Engineers, pp 519–528. https://doi.org/10.1115/imece2012-89071

  21. Qin Z (2001) Vibration and Aeroelasticity of Advanced Aircraft Wings Modeled as Thin-Walled Beams–Dynamics, Stability and Control. Virginia Polytechnic Institute and State University

  22. Bisplinghoff RL, Ashley H, Halfman RL (1996) Aeroelasticity. Dover Publications, New York

    MATH  Google Scholar 

  23. Hodges DH, Dowell E (1974) Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades. NASA TN D-7818,

  24. Dowell E, Traybar J, Hodges DH (1977) An experimental-theoretical correlation study of non-linear bending and torsion deformations of a cantilever beam. J Sound Vib 50(4):533–544. https://doi.org/10.1016/0022-460X(77)90501-6

    Article  Google Scholar 

  25. Crespo da Silva M, Glynn C (1978) Nonlinear flexural-flexural-torsional dynamics of inextensional beams. I. Equations of motion. J Struct Mech 6(4):437–448. https://doi.org/10.1080/03601217808907348

    Article  Google Scholar 

  26. Rosen A, Friedmann P (1979) The nonlinear behavior of elastic slender straight beams undergoing small strains and moderate rotations. J Appl Mech 46(1):161–168. https://doi.org/10.1115/1.3424490

    Article  MATH  Google Scholar 

  27. Hodges DH (1990) A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams. Int J Solids Struct 26(11):1253–1273

    Article  MathSciNet  Google Scholar 

  28. Pai PF, Nayfeh AH (1990) Three-dimensional nonlinear vibrations of composite beams—I. Equ Motion Nonlinear Dyn 1(6):477–502. https://doi.org/10.1007/BF01856950

    Article  Google Scholar 

  29. Tang D, Dowell EH (2001) Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings. AIAA J 39(8):1430–1441. https://doi.org/10.2514/2.1484

    Article  Google Scholar 

  30. Tran C, Petot D (1980) Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight

  31. Kim K, Strganac T (2002) Aeroelastic studies of a cantilever wing with structural and aerodynamic nonlinearities. In: 43rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 2002. p 1412. https://doi.org/10.2514/6.2002-1412

  32. Kim K, Strganac T (2003) Nonlinear responses of a cantilever wing with an external store. In: 44th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, 2003. Norfolk, VA, p 1708. https://doi.org/10.2514/6.2003-1708

  33. Sadr Lahidjani M, Haddadpour H, Shams S (2004) Nonlinear aeroelastic behavior of a high flexibility wing with long span considering large deflection. In: 45th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics & materials conference, 2004. p 1943. https://doi.org/10.2514/6.2004-1943

  34. Shams S, Lahidjani MS, Haddadpour H (2008) Nonlinear aeroelastic response of slender wings based on Wagner function. Thin-Walled Structures 46(11):1192–1203. https://doi.org/10.1016/j.tws.2008.03.001

    Article  Google Scholar 

  35. Abbas L, Chen Q, Marzocca P, Milanese A (2008) Non-linear aeroelastic investigations of store (s)-induced limit cycle oscillations. Proc Inst Mech Eng Part G J Aerosp Eng 222(1):63–80. https://doi.org/10.1243/09544100JAERO241

    Article  Google Scholar 

  36. Jian Z, Jinwu X (2009) Nonlinear aeroelastic response of high-aspect-ratio flexible wings. Chin J Aeronaut 22(4):355–363. https://doi.org/10.1016/S1000-9361(08)60111-9

    Article  Google Scholar 

  37. Eskandary K, Dardel M, Pashaei M, Moosavi A (2012) Nonlinear aeroelastic analysis of high-aspect-ratio wings in low subsonic flow. Acta Astronaut 70:6–22. https://doi.org/10.1016/j.actaastro.2011.07.017

    Article  Google Scholar 

  38. Dardel M, Eskandary K, Pashaei M, Moosavi AK (2014) The effect of angle of attack on limit cycle oscillations for high-aspect-ratio wings. Sci Iran Trans B Mech Eng 21(1):130

    Google Scholar 

  39. Nayfeh AH, Pai PF (2004) Linear and nonlinear structural mechanics. Wiley, Hoboken

    Book  Google Scholar 

  40. Sina S, Farsadi T, Haddadpour H (2013) Aeroelastic stability and response of composite swept wings in subsonic flow using indicial aerodynamics. J Vib Acoust 135(5):051019. https://doi.org/10.1115/1.4023992

    Article  Google Scholar 

  41. Yates EC (1966) Modified-strip-analysis method for predicting wing flutter at subsonic to hypersonic speeds. J Aircr 3(1):25–29. https://doi.org/10.2514/3.43702

    Article  Google Scholar 

  42. Wright JR, Cooper JE (2008) Introduction to aircraft aeroelasticity and loads, vol 20. Wiley, England

    Google Scholar 

  43. Fazelzadeh S, Marzocca P, Rashidi E, Mazidi A (2010) Effects of rolling maneuver on divergence and flutter of aircraft wing store. J Aircr 47(1):64–70. https://doi.org/10.2514/1.40463

    Article  Google Scholar 

  44. Goland M (1945) The flutter of a uniform cantilever wing. J Appl Mech Trans ASME 12(4):A197–A208

    Google Scholar 

  45. Patil M, Hodges D, Cesnik C (1998) Nonlinear aeroelastic analysis of aircraft with high-aspect-ratio wings. In: Proceeding of 39th AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics, and materials conference, AIAA paper 98-1955, Long Beach, CA, 1998. https://doi.org/10.2514/6.1998-1955

  46. Qin Z, Librescu L (2003) Aeroelastic instability of aircraft wings modelled as anisotropic composite thin-walled beams in incompressible flow. J Fluids Struct 18(1):43–61. https://doi.org/10.1016/S0889-9746(03)00082-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shokrollahi.

Additional information

Technical Editor: André Cavalieri.

Appendix

Appendix

The nonlinear terms that have been defined as \( G_{v} \) and \( G_{\alpha } \), and elements of structural and aerodynamic matrices are given in this section. Note that \( D_{\xi } \), \( D_{\eta } \), and \( D_{\zeta } \) are torsional, out-of-plane, and in-plane rigidity, respectively, \( j_{\xi } \), \( j_{\eta } \), and \( j_{\zeta } \) denote moment of inertia per length about the axes of the deformed coordinate system. Moreover, \( m \) and \( n \) denote the number of the out-of-plane and torsional modes, respectively.

$$ \begin{aligned} G_{v} = & - D_{\zeta } \left[ {v^{{\prime }} \left( {v^{{\prime \prime }} v^{{\prime }} } \right)^{{\prime }} } \right]^{{\prime }} - \left( {D_{\eta } - D_{\zeta } } \right)\left( {v^{{\prime \prime }} \alpha^{2} } \right)^{{\prime \prime }} - \frac{1}{2}m\left[ {v^{{\prime }} \mathop \int \limits_{L}^{s} \frac{{\partial^{2} }}{{\partial t^{2} }}\left( {\mathop \int \limits_{0}^{s} v^{{{\prime }2}} {\text{d}}s} \right){\text{d}}s} \right]^{{\prime }} + \left( {j_{\eta } - j_{\zeta } } \right)\left[ {\frac{\partial }{\partial t}\left( {\dot{v}^{{\prime }} \alpha^{2} } \right)} \right]^{{\prime }} + \left[ {j_{\zeta } v^{{\prime }} \frac{\partial }{\partial t}\left( {v^{{\prime }} \dot{v}^{{\prime }} } \right)} \right]^{{\prime }} \\ \quad + me_{z} \left[ {v^{\prime } \frac{{\partial^{2} }}{{\partial t^{2} }}\left( {\mathop \int \limits_{L}^{s} v^{\prime}\alpha \,{\text{d}}s} \right)} \right]^{'} + me_{z} \left\{ {\alpha \left[ { - \frac{1}{2}\frac{{\partial^{2} }}{{\partial t^{2} }}\left( {\mathop \int \limits_{0}^{s} v^{\prime 2} \,{\text{d}}s} \right) + v^{\prime}\ddot{v}} \right]} \right\}^{\prime } - \frac{1}{2}me_{z} \frac{{\partial^{2} }}{{\partial t^{2} }}\left( {v^{\prime 2} \alpha + \frac{1}{3}\alpha^{3} } \right) + j_{\zeta } \ddot{v}^{\prime \prime } \\ \end{aligned} $$
$$ G_{\alpha } = \left( {D_{\zeta } - D_{\eta } } \right)v^{{{\prime \prime }2}} \alpha + \left( {j_{\eta } - j_{\zeta } } \right)\dot{v}^{{{\prime }2}} \alpha + me_{z} \left[ {\frac{1}{2}v^{{\prime }} \frac{{\partial^{2} }}{{\partial t^{2} }}\left( {\mathop \int \limits_{0}^{s} v^{{{\prime }2}} {\text{d}}s} \right) - \frac{1}{2}\left( {v^{{{\prime }2}} + \alpha^{2} } \right)\ddot{v}} \right] $$
$$ \begin{array}{*{20}l} {M_{i,j} = \mathop \int \limits_{0}^{1} V_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s = \delta_{ij} } \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {M_{i,m + j} = - e\mathop \int \limits_{0}^{1} V_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s,} \hfill & {i \le i \le m, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {M_{m + i,j} = - e\mathop \int \limits_{0}^{1} A_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s,} \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {M_{m + i,m + j} = j_{1} \mathop \int \limits_{0}^{1} A_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s = j_{1} \delta_{ij} } \hfill & {1 \le i \le n, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{i,j} = \beta_{z} \mathop \int \limits_{0}^{1} V_{i} \left( s \right)V_{j}^{iv} \left( s \right){\text{d}}s = \beta_{z} z_{j}^{4} \delta_{ij} } \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{m + i,m + j} = - \beta_{y} \mathop \int \limits_{0}^{1} A_{i} \left( s \right)A_{j}^{''} \left( s \right){\text{d}}s = \beta_{y} \gamma_{j}^{2} \delta_{ij} , \quad {\text{where}}\, \gamma_{j} \, is\, a\, {\text{root}} \,{\text{of}}\,\sin \left( {\gamma_{j} } \right) = 0} \hfill & {1 \le i \le n, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{i,j} = c_{{v_{i} }} \mathop \int \limits_{0}^{1} V_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s = c_{{v_{i} }} \delta_{ij} } \hfill & {1 \le i \le m, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{m + i,m + j} = c_{{\alpha_{i} }} \mathop \int \limits_{0}^{1} A_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s = c_{{\alpha_{i} }} \delta_{ij} } \hfill & {1 \le i \le n, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {M_{i,j}^{nl} = j_{3} \mathop \int \limits_{0}^{1} V_{i} V_{j}^{{\prime \prime }} \, {\text{d}}s - \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{q = 1}^{m} \mathop \int \limits_{0}^{1} V_{i} \left( {V_{p}^{{\prime }} \mathop \int \limits_{1}^{s} \mathop \int \limits_{0}^{s} V_{j}^{{\prime }} V_{q}^{{\prime }} \,{\text{d}}s{\text{d}}s} \right)^{'} {\text{d}}s\,v_{p} v_{q} - e_{z} \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{k = 1}^{n} \mathop \int \limits_{0}^{1} V_{i} \left[ {\left( {{\text{A}}_{k} \mathop \int \limits_{0}^{s} V_{j}^{{\prime }} V_{p}^{{\prime }} \,{\text{d}}s - {\text{A}}_{k} V_{p}^{'} V_{j} - V_{p}^{{\prime }} \mathop \int \limits_{1}^{s} V_{j}^{{\prime }} {\text{A}}_{k} \,{\text{d}}s} \right)^{{\prime }} + V_{j}^{{\prime }} V_{p}^{{\prime }} {\text{A}}_{k} } \right] {\text{d}}s\,v_{p} \alpha_{k} } \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {M_{i,m + j}^{nl} = \frac{1}{2}e_{z} \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{q = 1}^{m} \mathop \int \limits_{0}^{1} \left[ {2V_{i} \left( {V_{p}^{{\prime }} \mathop \int \limits_{1}^{s} V_{q}^{{\prime }} {\text{A}}_{j} \,{\text{d}}s} \right)^{{\prime }} - V_{i} V_{p}^{{\prime }} V_{q}^{{\prime }} {\text{A}}_{j} } \right] {\text{d}}s\,v_{p} v_{q} - \frac{1}{2}e_{z} \mathop \sum \limits_{p = 1}^{n} \mathop \sum \limits_{q = 1}^{n} \mathop \int \limits_{0}^{1} V_{i} {\text{A}}_{j} {\text{A}}_{p} {\text{A}}_{q} \,{\text{d}}s\alpha_{p} \alpha_{q} } \hfill & {1 \le i \le m, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {M_{m + i,j}^{nl} = \frac{1}{2}e_{z} \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{q = 1}^{m} \mathop \int \limits_{0}^{1} A_{i} V_{p}^{{\prime }} \left[ {2\mathop \int \limits_{0}^{s} V_{j}^{{\prime }} V_{q}^{{\prime }} \,{\text{d}}s - V_{q}^{{\prime }} V_{j} } \right]{\text{d}}s\,v_{p} v_{q} \ddot{v}_{j} - \frac{1}{2}e_{z} \mathop \sum \limits_{k = 1}^{n} \mathop \sum \limits_{p = 1}^{n} \mathop \int \limits_{0}^{1} A_{i} A_{k} A_{p} V_{j} {\text{d}}s\,\alpha_{k} \alpha_{p} } \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{i,j}^{nl} = - \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{q = 1}^{m} \mathop \int \limits_{0}^{1} V_{i} \left( {V_{p}^{'} \mathop \int \limits_{1}^{s} \mathop \int \limits_{0}^{s} V_{j}^{'} V_{q}^{'} \,{\text{d}}s\,{\text{d}}s} \right)^{'} {\text{d}}sv_{p} \dot{v}_{q} - e_{z} \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{k = 1}^{n} \mathop \int \limits_{0}^{1} \left[ {V_{i} \left( {{\text{A}}_{k} \mathop \int \limits_{0}^{s} V_{j}^{{\prime }} V_{p}^{{\prime }} {\text{d}}s} \right)^{{\prime }} + V_{i} V_{j}^{{\prime }} V_{p}^{{\prime }} {\text{A}}_{k} } \right] {\text{d}}s\,\dot{v}_{p} \alpha_{k} \, + 2e_{z} \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{k = 1}^{n} \mathop \int \limits_{0}^{1} \left[ {V_{i} \left( {V_{p}^{{\prime }} \mathop \int \limits_{1}^{s} V_{j}^{{\prime }} {\text{A}}_{k} \,{\text{d}}s} \right)^{{\prime }} - V_{i} V_{j}^{{\prime }} V_{p}^{{\prime }} {\text{A}}_{k} } \right] {\text{d}}s\,v_{p} \dot{\alpha }_{k} } \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{i,m + j}^{nl} = - e_{z} \mathop \sum \limits_{p = 1}^{n} \mathop \sum \limits_{q = 1}^{n} \mathop \int \limits_{0}^{1} V_{i} {\text{A}}_{j} {\text{A}}_{p} {\text{A}}_{q} \,{\text{d}}s\,\dot{\alpha }_{p} \alpha_{q} } \hfill & {1 \le i \le m, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{m + i,j}^{nl} = \left( {j_{2} - j_{3} } \right)\mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{k = 1}^{n} \mathop \int \limits_{0}^{1} A_{i} V_{j}^{{\prime }} V_{p}^{{\prime }} A_{k} {\text{d}}s\,\dot{v}_{p} \alpha_{k} + e_{z} \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{q = 1}^{m} \mathop \int \limits_{0}^{1} A_{i} V_{p}^{{\prime }} \mathop \int \limits_{0}^{s} V_{j}^{{\prime }} V_{q}^{{\prime }} \,{\text{d}}s \,{\text{d}}sv_{p} \dot{v}_{q} } \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{i,j}^{nl} = - \mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{q = 1}^{m} \mathop \int \limits_{0}^{1} V_{i} \left[ {V_{j}^{{\prime \prime }} \left( {V_{p}^{{\prime }} V_{q}^{{\prime \prime }} } \right)^{'} } \right]^{'} {\text{d}}s\,v_{p} v_{q} - \left( {\beta_{z} - 1} \right)\mathop \sum \limits_{k = 1}^{n} \mathop \sum \limits_{p = 1}^{n} \mathop \int \limits_{0}^{1} V_{i} \left( {V_{j}^{{\prime \prime }} {\text{A}}_{k} {\text{A}}_{p} } \right)^{{\prime \prime }} {\text{d}}s\,\alpha_{k} \alpha_{p} } \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{m + i,j}^{nl} = \left( {1 - \beta_{z} } \right)\mathop \sum \limits_{p = 1}^{m} \mathop \sum \limits_{k = 1}^{n} \mathop \int \limits_{0}^{1} A_{i} V_{j}^{''} V_{p}^{''} A_{k} {\text{d}}sv_{p} \alpha_{k} } \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {M_{m + i,m + j}^{a} = - \mu b^{2} \left( {\frac{1}{8} + a^{2} } \right)\mathop \int \limits_{0}^{1} A_{m} \left( s \right)A_{k} \left( s \right) } \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{i,j}^{a} = c_{a} \phi_{c\alpha } \left( 0 \right)\mathop \int \limits_{0}^{1} V_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{i,m + j}^{a} = \left[ {\mu U + 2c_{a} b\phi_{cq} \left( 0 \right)} \right]\mathop \int \limits_{0}^{1} V_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le m, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{m + i,j}^{a} = 2bc_{a} \phi_{cm} \left( 0 \right)\mathop \int \limits_{0}^{1} A_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {C_{m + i,m + j}^{a} = \left[ {4b^{2} c_{a} \phi_{cmq} \left( 0 \right) - \mu bU\left( {\frac{1}{2} - a} \right)} \right]\mathop \int \limits_{0}^{1} A_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le n, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{i,j}^{a} = c_{a} \dot{\phi }_{c\alpha } \left( 0 \right)\mathop \int \limits_{0}^{1} V_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s,} \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{i,m + j}^{a} = c_{a} \left[ {U\phi_{c\alpha } \left( 0 \right) + 2b\dot{\phi }_{cq} \left( 0 \right)} \right]\mathop \int \limits_{0}^{1} V_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le m, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{m + i,j}^{a} = 2bc_{a} \dot{\phi }_{cm} \left( 0 \right)\mathop \int \limits_{0}^{1} A_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {K_{m + i,m + j}^{a} = 2bc_{a} \left[ {U\phi_{cm} \left( 0 \right) + 2b\dot{\phi }_{cmq} \left( 0 \right)} \right]\mathop \int \limits_{0}^{1} A_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le n, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {IC_{i,j} = - c_{a} \dot{\phi }_{c\alpha } \mathop \int \limits_{0}^{1} V_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s,} \hfill & {1 \le i \le m, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {IC_{i,m + j} = - 2c_{a} b\dot{\phi }_{cq} \mathop \int \limits_{0}^{1} V_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s,} \hfill & {1 \le i \le m, 1 \le j \le n} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {IC_{m + i,j} = - 2bc_{a} \dot{\phi }_{cm} \mathop \int \limits_{0}^{1} A_{i} \left( s \right)V_{j} \left( s \right){\text{d}}s,} \hfill & {1 \le i \le n, 1 \le j \le m} \hfill \\ \end{array} $$
$$ \begin{array}{*{20}l} {IC_{m + i,m + j} = - 4b^{2} c_{a} \dot{\phi }_{cmq} \mathop \int \limits_{0}^{1} A_{i} \left( s \right)A_{j} \left( s \right){\text{d}}s} \hfill & {1 \le i \le n, 1 \le j \le n} \hfill \\ \end{array} $$

\( M_{i,j} \), \( C_{i,j} \) and \( K_{i,j} \); \( M_{i,j}^{nl} \), \( C_{i,j}^{nl} \) and \( K_{i,j}^{nl} \); \( M_{i,j}^{a} \), \( C_{i,j}^{a} \), and \( K_{i,j}^{a} \) denote the elements of mass, damping, and stiffness matrices that have been categorized in terms of linear, nonlinear, and aerodynamic ones, respectively. The row and column positions of each element in the matrix are specified with their subscripts. Recall that each matrix is square on the order of \( m + n \), and the elements of matrices not mentioned above are zero. The elements of the initial condition matrix are defined by \( IC_{i,j} \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejati, M., Shokrollahi, S. & Shams, S. Nonlinear aeroelastic analysis of high-aspect-ratio wings using indicial aerodynamics. J Braz. Soc. Mech. Sci. Eng. 40, 298 (2018). https://doi.org/10.1007/s40430-018-1224-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-018-1224-3

Keywords

Navigation