Skip to main content
Log in

A mixed 3D corotational beam with cross-section warping for the analysis of damaging structures under large displacements

  • Novel Computational Approaches to Old and New Problems in Mechanics
  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

This paper presents the formulation of a tri-dimensional (3D) beam-column finite element (FE) with cross-section warping, based on a corotational approach for the analysis of damaging structures including material and geometric nonlinear effects. The model derives from an extended Hu–Washizu formulation and is an enhancement of a previously proposed beam FE formulation originally adopted for steel and reinforced concreted structures under linear geometry. The warping of the cross-sections is described by introducing additional degrees of freedom to those standard for a classic 3D beam FE and interpolating the corresponding displacement field with polynomial shape functions. The effects of large displacements are modeled through a corotational approach also including the axial-torsion interaction due to the Wagner effect. A 3D plastic-damage model is introduced to reproduce the degrading phenomena typical of many structural elements. This is used to simulate both damage occurring in ductile materials under large deformations and the non-symmetric tensile-compressive damage of brittle-like materials. The paper concludes with some numerical studies to validate the proposed FE and investigate the performances of the adopted corotational approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Crisfield MA (1990) A consistent co-rotational formulation for non-linear, three-dimensional, beam-elements. Comput Method Appl Mech Eng 81(2):131–150

    Article  ADS  MATH  Google Scholar 

  2. Nour-Omid B, Rankin CC (1991) Finite rotation analysis and consistent linearization using projectors. Comput Method Appl Mech Eng 93(3):353–384

    Article  ADS  MATH  Google Scholar 

  3. Crisfield MA, Moita GF (1996) A unified co-rotational for solids, shells and beams. Int J Solids Struct 81(20–22):2969–2992

    Article  MATH  Google Scholar 

  4. Wempner G (1969) Finite elements, finite rotations and small strains of flexible shells. Int J Solids Struct 5(2):117–153

    Article  MATH  Google Scholar 

  5. Belytschko T, Hsieh BJ (1973) Nonlinear transient finite element analysis with convected coordinates. Int J Numer Meth Eng 7(3):255–271

    Article  MATH  Google Scholar 

  6. Felippa CA, Haugen B (2005) A unified formulation of small-strain corotational finite elements: I. Theory. Comput Method Appl Mech Eng 194(21):2285–2335

    Article  ADS  MATH  Google Scholar 

  7. Rankin CC, Nour-Omid B (1988) The use of projectors to improve finite element performance. Comput Struct 30(1–2):257–267

    Article  MATH  Google Scholar 

  8. De Souza RM (2000) Force-based finite element for large displacement inelastic analysis of frames. Ph.D. thesis, University of California, Berkeley, CA, USA

  9. Battini JM, Pacoste C (2002) Co-rotational beam elements with warping effects in instability problems. Comput Method Appl Mech Eng 191(17):1755–1789

    Article  ADS  MATH  Google Scholar 

  10. Battini JM (2007) A modified corotational framework for triangular shell elements. Comput Method Appl Mech Eng 196(13):1905–1914

    Article  ADS  MATH  Google Scholar 

  11. Battini JM (2007) A non-linear corotational 4-node plane element. Mech Res Commun 35(6):408–413

    Article  MATH  Google Scholar 

  12. Battini JM (2008) Large rotations and nodal moments in corotational elements. Comput Model Eng Sci CMES 33(1):1–15

    MathSciNet  MATH  Google Scholar 

  13. Nukala PKV, White DW (2004) A mixed finite element for three-dimensional nonlinear analysis of steel frames. Comput Method Appl Mech Eng 193(23):2507–2545

    Article  ADS  MATH  Google Scholar 

  14. Alsafadie R, Hjiaj M, Battini JM (2010) Corotational mixed finite element formulation for thin-walled beams with generic cross-section. Comput Method Appl Mech Eng 199(49):3197–3212

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Camotim D, Basaglia C, Silvestre N (2010) GBT buckling analysis of thin-walled steel frames: a state-of-the-art report. Thin Wall Struct 48(10):726–743

    Article  MATH  Google Scholar 

  16. Alsafadie R, Hjiaj M, Battini JM (2011) Three-dimensional formulation of a mixed corotational thin-walled beam element incorporating shear and warping deformation. Thin Wall Struct 49(4):523–533

    Article  MATH  Google Scholar 

  17. Garcea G, Madeo A, Casciaro R (2012) The implicit corotational method and its use in the derivation of nonlinear structural models for beams and plates. J Mech Mater Struct 7(6):509–538

    Article  Google Scholar 

  18. Le TN, Battini JM, Hjiaj M (2014) A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures. Comput Method Appl Mech Eng 269:538–565

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Genoese A, Genoese A, Bilotta A, Garcea G (2014) Buckling analysis through a generalized beam model including section distortions. Thin Wall Struct 85:125–141

    Article  Google Scholar 

  20. Gabriele S, Rizzi N, Varano V (2016) A 1D nonlinear TWB model accounting for in plane cross-section deformation. Int J Solids Struct 94:170–178

    Article  Google Scholar 

  21. Le Corvec V (2012) Nonlinear 3d frame element with multi-axial coupling under consideration of local effects. Ph.D. thesis, University of California, Berkeley, CA, USA

  22. Di Re P, Addessi D, Filippou FC (2016) 3D beam-column finite element under non-uniform shear stress distribution due to shear and torsion. In: ECCOMAS congress 2016, VII European congress on computational methods in applied sciences and engineering

  23. Di Re P (2017) 3D beam-column finite elements under tri-axial stress–strain states: non-uniform shear stress distribution and warping. Ph.D. thesis, Sapienza University of Rome, http://hdl.handle.net/11573/937922

  24. Di Re P, Addessi D, Filippou FC (Revised) A mixed 3D beam element with damage plasticity for the analysis of RC members under warping torsion. J Struct Eng ASCE

  25. Pi YL, Bradford MA, Uy B (2005) A spatially curved beam element with warping and Wagner effects. Ibt J Numer Meth Eng 63(9):1342–1369

    Article  MATH  Google Scholar 

  26. Timoshenko S, Gere JM (1961) Theory of elastic stability, 2nd edn. McGraw-Hill, New York

  27. Ciampi V, Carlesimo L (1986) A nonlinear beam element for seismic analysis of structures. In: Proceedings of the 8th European conference on earthquake engineering

  28. Spacone E, Filippou FC, Taucer FF (2012) Fibre beam-column model for non-linear analysis of R/C frames: Part I. Formulation. Earthq Eng Struct 25(7):711–726

    Article  Google Scholar 

  29. Addessi D, Ciampi V (2007) A regularized force-based beam element with a damage-plastic section constitutive law. Int J Numer Meth Eng 70(5):610–629

    Article  MATH  Google Scholar 

  30. Neuenhofer A, Filippou FC (1997) Evaluation of nonlinear frame finite-element models. J Struct Eng ASCE 123(7):958–966

    Article  Google Scholar 

  31. Haugen B (1994) Buckling and stability problems for thin shell structures using high performance finite elements. Ph.D. thesis, University of Colorado, Boulder, USA

  32. Taylor RL, Filippou FC, Saritas A, Auricchio F (2003) A mixed finite element method for beam and frame problems. Comput Mech 31(1):192–203

    Article  MATH  Google Scholar 

  33. Vlasov VZ (1984) Thin-walled elastic beams. National Technical Information Service, Washington

  34. Addessi D, Marfia S, Sacco E (2002) A plastic nonlocal damage model. Comput Method Appl Mech Eng 191(13):1291–1310

    Article  ADS  MATH  Google Scholar 

  35. Drucker DC, Prager W (1952) Soil mechanics and plastic analysis or limit design. Q Appl Math 10(2):157–165

    Article  MathSciNet  MATH  Google Scholar 

  36. Rezaiee-Pajand M, Sharifian M, Sharifian M (2011) Accurate and approximate integrations of DruckerPrager plasticity with linear isotropic and kinematic hardening. Eur J Mech A Solid 30(3):345–361

    Article  MATH  Google Scholar 

  37. Öztekin E, Pul S, Hüsem M (2016) Experimental determination of Drucker–Prager yield criterion parameters for normal and high strength concretes under triaxial compression. Constr Build Mater 112(1):725–732

    Article  Google Scholar 

  38. Filippou FC, Constantinides M (2004) Fedeaslab getting started guide and simulation examples. Technical Report 22, NEESgrid

  39. Rizzi N, Varano V, Gabriele S (2013) Initial postbuckling behavior of thin-walled frames under mode interaction. Thin Wall Struct 68:124–134

    Article  Google Scholar 

  40. Pi YL, Trahair NS (1995) Inelastic torsion of steel I-beams. J Struct Eng ASCE 121(4):609–620

    Article  Google Scholar 

  41. Kostic SM, Filippou FC (2011) Section discretization of fiber beam-column elements for cyclic inelastic response. J Struct Eng ASCE 138(5):592–601

    Article  Google Scholar 

  42. Zhou SJ (2010) Finite beam element considering shear-lag effect in box girder. J Eng Mech ASCE 136(9):1115–1122

    Article  Google Scholar 

  43. Légeron F, Paultre P (2000) Behavior of high-strength concrete columns under cyclic flexure and constant axial load. ACI Struct J 97(4):591–601

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Di Re.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Re, P., Addessi, D. A mixed 3D corotational beam with cross-section warping for the analysis of damaging structures under large displacements. Meccanica 53, 1313–1332 (2018). https://doi.org/10.1007/s11012-017-0749-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-017-0749-3

Keywords

Navigation